行为预测模型的训练方法及装置

    公开(公告)号:CN112581191A

    公开(公告)日:2021-03-30

    申请号:CN202011626281.3

    申请日:2020-08-14

    Abstract: 本说明书实施例提供一种行为预测模型的训练方法,包括:针对目标对象,获取基于多个种子用户形成的多个正样本,其中任意的第一正样本包括,与第一种子用户对应的第一用户特征和正例标签,此标签指示对应用户是被确定为对目标对象做出特定行为的用户;基于多个种子用户各自的用户特征,采用无监督的离群点检测算法,确定第一种子用户的离群分数,作为针对行为预测任务的第一训练权重;利用包括上述多个正样本以及预先获取的多个负样本,对第一行为预测模型进行第一训练,具体包括:将第一用户特征输入第一行为预测模型中,结合得到的行为预测结果和上述正例标签,确定行为预测损失,并利用第一训练权重对其进行加权处理,以训练第一行为预测模型。

    时间序列预测方法及装置
    12.
    发明公开

    公开(公告)号:CN118211729A

    公开(公告)日:2024-06-18

    申请号:CN202410417783.7

    申请日:2024-04-08

    Abstract: 本说明书实施例提供一种时间序列预测方法及装置,在进行时序预测过程中,考虑到所利用的历史时序数据可能存在缺失从而导致偏差,可以对粗粒度历史时间序列和细粒度历史时间序列分别进行处理,并基于对预测的细粒度时间序列的统计确定具有可比性的粗粒度时序数值。其中,利用粗粒度历史时间序列可以预测粗粒度时序。而粗粒度时序中,单个时间区间(如对应单个时间节点)可以对应多个细粒度时间段,因此,还可以利用细粒度历史时间序列预测粗粒度时序下的细粒度时序分布,并通过分配比例进行描述。从而,可以按照所确定的分配比例,以及粗粒度预测结果,进行细粒度时间序列的预测。如此,可以提高时序预测结果的准确性。

    一种资源调配方法、装置以及设备

    公开(公告)号:CN114840342A

    公开(公告)日:2022-08-02

    申请号:CN202210519426.2

    申请日:2022-05-13

    Abstract: 本说明书实施例公开了一种资源调配方法、装置以及设备,属于机器学习技术领域。方案包括:确定确定与可用资源相关的业务属性,并待预测的用于描述所述业务属性变化情况的宏观时间序列所对应的多个微观时间序列;对所述多个微观时间序列进行聚类,得到多个微观时间序列组;分别对各所述微观时间序列组进行预测,得到各所述微观时间序列组的预测值;根据各所述微观时间序列组的预测值,预测得到所述宏观时间序列的预测值;根据所述宏观时间序列的预测值,向所述业务属性对应的业务调配所述可用资源。

Patent Agency Ranking