物品推荐方法和系统
    11.
    发明公开

    公开(公告)号:CN116128581A

    公开(公告)日:2023-05-16

    申请号:CN202211261153.2

    申请日:2022-10-14

    Abstract: 本说明书提供的物品推荐方法和系统,在获取目标物品的属性信息和用户交互信息后,在属性信息中提取出相似性特征,得到显式相似性特征,并基于用户交互信息,确定与目标物品相似的至少一个物品,以得到隐式相似性特征,以及基于显式相似性特征和隐式相似性特征,确定目标物品对应的推荐模型的初始化参数,并基于初始化参数,采用推荐模型对目标物品进行推荐;该方案可以提升在冷启动下物品推荐的准确率。

    一种模型的训练方法、装置以及设备

    公开(公告)号:CN115496162A

    公开(公告)日:2022-12-20

    申请号:CN202211259139.9

    申请日:2022-10-14

    Abstract: 本说明书实施例公开了一种模型的训练方法、装置以及设备。通过获取第j层对于训练样本的输出特征xj,生成由M个输出特征所组成的特征矩阵,1≤j≤M;针对第i个任务,根据稀疏矩阵中的第i行与所述输出特征矩阵生成对应该任务的稀疏特征vi,其中,所述稀疏矩阵中包含K*M个可训练的稀疏参数Z;获取所述多任务模型对所述第i个任务的初始预测特征,融合所述初始预测特征和所述稀疏特征vi生成第i个任务的目标预测特征yi;根据所述目标预测特征yi和训练样本的标签的差异确定第i个任务的损失值Li;融合所产生的K个任务的损失值生成总损失值,根据所述总损失值对所述稀疏参数Z进行训练。

    多任务学习模型的预测方法及装置

    公开(公告)号:CN113420879A

    公开(公告)日:2021-09-21

    申请号:CN202110782136.2

    申请日:2021-07-09

    Abstract: 本公开提供了一种多任务学习模型的预测方法及装置,所述方法包括:利用掩码对嵌入向量进行加权,得到加权后的嵌入向量;将加权后的嵌入向量输入第一子网络层和第三子网络层,得到第一子网络层的第一输出向量和第三子网络层的第二输出向量;将第一输出向量和第二输出向量输入第二子网络层进行处理,得到第三输出向量,处理包括利用第二子网络层的中的第一编码变量对第一输出向量进行计算,利用第二子网络层的中的第二编码变量对第二输出向量进行计算,其中第一编码变量指示第一子网络层中神经元与第三子网络层中神经元之间的连接关系,第二编码变量指示第二子网络层中神经元与第三子网络层中神经元之间的连接关系。

Patent Agency Ranking