-
公开(公告)号:CN112541129B
公开(公告)日:2023-05-23
申请号:CN202011409575.0
申请日:2020-12-06
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F16/9536 , G06N3/042 , G06N3/0464 , G06N3/08 , G06F18/24 , G06Q40/04
Abstract: 本说明书实施例提供一种处理交互事件的方法及装置,在处理方法中,获取新增交互事件。在已有动态交互图中,确定出新增交互事件对应的两个目标节点,并建立新增连接边。至少对两个目标节点的节点信息进行融合,得到事件交互信息。根据两个目标节点各自所在最近历史交互事件与新增交互事件的交互时间差,以及事件交互信息,分别更新两个目标节点各自的隐含向量。确定各阶邻居节点。针对各阶邻居节点中任意的第一邻居节点,基于其所在最近历史交互事件与新增交互事件的交互时间差、第一邻居节点与对应目标节点的第一距离,以及两个目标节点各自的更新的隐含向量,确定对应于第一邻居节点的传播信息。根据传播信息,更新第一邻居节点的隐含向量。
-
公开(公告)号:CN112541575B
公开(公告)日:2023-03-10
申请号:CN202011409587.3
申请日:2020-12-06
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06N3/084 , G06N3/0464 , G06N3/048 , G06F18/2415
Abstract: 本说明书实施例提供一种图神经网络的训练方法,包括:获取原始关系网络图,其中包括对应多个业务对象的多个对象节点,以及对象节点之间存在关联关系而形成的原始连接边;在该原始关系网络图中添加若干记忆节点,并在每个记忆节点和每个对象节点之间建立新增连接边,得到扩张关系网络图,用于对图神经网络进行多轮迭代更新,其中任一轮包括:利用图神经网络对扩张关系网络图进行图嵌入处理,在多个图神经网络隐层中的任一隐层,对上一隐层针对第一对象节点、其若干邻居对象节点和若干记忆节点输出的隐向量进行聚合,得到本隐层输出的第一对象隐向量;根据最后一个隐层输出的第一对象隐向量以及第一对象节点的业务标签,对图神经网络进行本轮更新。
-
公开(公告)号:CN111160614A
公开(公告)日:2020-05-15
申请号:CN201911229080.7
申请日:2019-12-04
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书一个或多个实施例提供了一种资源转移预测模型的训练方法、装置及计算设备。在一个实施例中,该方法包括:获取多个历史行为数据集合中的多个用户的历史行为特征数据和资源转移数据;将每一个历史行为数据集合对应的历史行为特征数据输入模型,得到每一个历史行为数据集合对应的预测值;聚合每一个历史行为数据集合对应的预测值和资源转移数据,得到每一个历史行为数据集合对应的损失函数;在每一个历史行为数据集合对应的损失函数不满足预设条件的情况下,根据每一个历史行为数据集合对应的损失函数调整模型中的参数;继续迭代,直至损失函数满足预设条件,将参数调整后的模型作为训练后的资源转移预测模型。
-
公开(公告)号:CN115081640A
公开(公告)日:2022-09-20
申请号:CN202210636831.2
申请日:2020-12-06
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例提供一种基于差分隐私的联邦学习方法及装置、电子设备,该方法应用于任一终端设备,包括多次迭代,每次迭代包括:基于训练数据和当前本地参数,确定待处理的第一梯度向量,对第一梯度向量进行多级量化处理,得到第二梯度向量,在第二梯度向量的向量空间中,基于第二梯度向量,生成第一向量集合和第二向量集合,进行满足差分隐私的采样,以从第一向量集合或第二向量集合中随机采样出第三梯度向量。对第三梯度向量进行归一化,得到目标梯度向量,并向服务器上传目标梯度向量。能够提高联邦学习过程中的通讯效率,从而提高了联邦学习的效率。
-
公开(公告)号:CN112948885A
公开(公告)日:2021-06-11
申请号:CN202110320900.4
申请日:2021-03-25
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例提供一种实现隐私保护的多方协同更新模型的方法、装置及系统,服务器可以向每个参与方i下发第t轮公共样本的聚合结果。每个参与方i根据第t轮公共样本和聚合结果,对本地的第i模型进行第一更新。每个参与方i基于本地样本集中固定的第一私有样本及其样本标签,对第一更新后的第i模型进行第二更新。每个参与方i将用于下一轮迭代的第t+1轮公共样本,输入第二更新后的第i模型,并将输出的第二预测结果发送给服务器,以供服务器聚合对应于n个参与方的n份第二预测结果,并在下一轮迭代开始之后使用。在多轮迭代结束之后,每个参与方i可以将其第二更新后的第i模型,作为其与其它参与方协同更新的模型。
-
公开(公告)号:CN112541592A
公开(公告)日:2021-03-23
申请号:CN202011409580.1
申请日:2020-12-06
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例提供一种基于差分隐私的联邦学习方法及装置、电子设备,该方法应用于任一终端设备,包括多次迭代,每次迭代包括:基于训练数据和当前本地参数,确定待处理的第一梯度向量,该第一梯度向量的欧式范数小于等于预设范数,对第一梯度向量进行多级量化处理,得到第二梯度向量,在第二梯度向量的向量空间中,基于第二梯度向量,生成第一向量集合和第二向量集合,进行满足差分隐私的采样,以从第一向量集合或第二向量集合中随机采样出第三梯度向量。对第三梯度向量进行归一化,得到目标梯度向量,并向服务器上传目标梯度向量。能够提高联邦学习过程中的通讯效率,从而提高了联邦学习的效率。
-
公开(公告)号:CN111681059A
公开(公告)日:2020-09-18
申请号:CN202010819192.4
申请日:2020-08-14
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例提供一种行为预测模型的训练方法,包括:先确定针对目标对象的多个样本用户,其中任一的第一样本用户对应第一样本硬标签,指示是否对该目标对象做出特定行为;再基于利用训练后的图神经网络对用户-对象二部图进行图嵌入处理而确定的嵌入向量集,确定对应于第一样本用户的样本用户特征向量以及对应于目标对象的目标对象特征向量,进而确定第一样本用户对目标对象做出特定行为的特定行为概率,作为第一样本软标签,并且,将该样本用户特征向量输入第一行为预测模型中,得到行为预测结果;利用基于该预测结果和第一样本硬标签确定的第一损失项,以及基于该预测结果和第一样本软标签确定的第二损失项,训练该第一行为预测模型。
-
公开(公告)号:CN115081640B
公开(公告)日:2024-10-18
申请号:CN202210636831.2
申请日:2020-12-06
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例提供一种基于差分隐私的联邦学习方法及装置、电子设备,该方法应用于任一终端设备,包括多次迭代,每次迭代包括:基于训练数据和当前本地参数,确定待处理的第一梯度向量,对第一梯度向量进行多级量化处理,得到第二梯度向量,在第二梯度向量的向量空间中,基于第二梯度向量,生成第一向量集合和第二向量集合,进行满足差分隐私的采样,以从第一向量集合或第二向量集合中随机采样出第三梯度向量。对第三梯度向量进行归一化,得到目标梯度向量,并向服务器上传目标梯度向量。能够提高联邦学习过程中的通讯效率,从而提高了联邦学习的效率。
-
公开(公告)号:CN112541592B
公开(公告)日:2022-05-17
申请号:CN202011409580.1
申请日:2020-12-06
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例提供一种基于差分隐私的联邦学习方法及装置、电子设备,该方法应用于任一终端设备,包括多次迭代,每次迭代包括:基于训练数据和当前本地参数,确定待处理的第一梯度向量,该第一梯度向量的欧式范数小于等于预设范数,对第一梯度向量进行多级量化处理,得到第二梯度向量,在第二梯度向量的向量空间中,基于第二梯度向量,生成第一向量集合和第二向量集合,进行满足差分隐私的采样,以从第一向量集合或第二向量集合中随机采样出第三梯度向量。对第三梯度向量进行归一化,得到目标梯度向量,并向服务器上传目标梯度向量。能够提高联邦学习过程中的通讯效率,从而提高了联邦学习的效率。
-
公开(公告)号:CN112581191A
公开(公告)日:2021-03-30
申请号:CN202011626281.3
申请日:2020-08-14
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例提供一种行为预测模型的训练方法,包括:针对目标对象,获取基于多个种子用户形成的多个正样本,其中任意的第一正样本包括,与第一种子用户对应的第一用户特征和正例标签,此标签指示对应用户是被确定为对目标对象做出特定行为的用户;基于多个种子用户各自的用户特征,采用无监督的离群点检测算法,确定第一种子用户的离群分数,作为针对行为预测任务的第一训练权重;利用包括上述多个正样本以及预先获取的多个负样本,对第一行为预测模型进行第一训练,具体包括:将第一用户特征输入第一行为预测模型中,结合得到的行为预测结果和上述正例标签,确定行为预测损失,并利用第一训练权重对其进行加权处理,以训练第一行为预测模型。
-
-
-
-
-
-
-
-
-