-
公开(公告)号:CN109614991A
公开(公告)日:2019-04-12
申请号:CN201811388028.1
申请日:2018-11-19
Applicant: 成都信息工程大学
Abstract: 本发明涉及一种基于Attention的多尺度扩张性心肌的分割分类方法。包括以下步骤:收集若干例患扩张性心肌病的病例,采集其心肌部位MRI图像数据;对上一步骤收集的MRI图像数据的病变区域逐层进行人工边缘标注,作为标签数据;对上一步骤得到的标签数据进行标准化预处理并转成二维数据集;构建基于Attention的多层二维卷积神经网络,使用上一步骤中的二维数据集进行训练;对于待分割分类的心肌部位MRI图像数据,采集同部位同样模态的医学图像,对采集的图像进行标准化处理;通过训练得到的网络模型,对待分割分类的心肌部位MRI图像数据进行自动分割分类。本发明可以实现对于扩张性心肌区域的自动分割和分类,且与主流网络对比能取得较高的精度。
-
公开(公告)号:CN109409508A
公开(公告)日:2019-03-01
申请号:CN201811310962.1
申请日:2018-11-06
Applicant: 成都信息工程大学
Abstract: 本发明属于图像重建技术领域,公开了一种基于生成对抗网络使用感知损失解决模型崩塌的方法,利用随机向量z生成与实际数据分布相似的图像,在训练的过程中采用感知损失将z和真实数据映射到特征空间中来提取更高层次的特征,并结合对抗损失来鼓励生成网络产生与实际图像相似的图像样本;最后,使得鉴别器不能判断这是一个虚假图像。本发明针对已有网络采用较小的数据集解决了模型崩塌问题,VGG-GAN在两个小场景数据集上进行评价;实验结果表明,用VGG-GAN方法生成的图像质量优于现有方法。
-
公开(公告)号:CN109409508B
公开(公告)日:2022-03-15
申请号:CN201811310962.1
申请日:2018-11-06
Applicant: 成都信息工程大学
Abstract: 本发明属于图像重建技术领域,公开了一种基于生成对抗网络使用感知损失解决模型崩塌的方法,利用随机向量z生成与实际数据分布相似的图像,在训练的过程中采用感知损失将z和真实数据映射到特征空间中来提取更高层次的特征,并结合对抗损失来鼓励生成网络产生与实际图像相似的图像样本;最后,使得鉴别器不能判断这是一个虚假图像。本发明针对已有网络采用较小的数据集解决了模型崩塌问题,VGG‑GAN在两个小场景数据集上进行评价;实验结果表明,用VGG‑GAN方法生成的图像质量优于现有方法。
-
公开(公告)号:CN109063710A
公开(公告)日:2018-12-21
申请号:CN201810907208.X
申请日:2018-08-09
Applicant: 成都信息工程大学
CPC classification number: G06K9/342 , G06K2209/05 , G06N3/0454
Abstract: 本发明涉及图像分割领域中的鼻咽部肿瘤图像分割技术,具体的说是一种基于多尺度特征金字塔的3D CNN鼻咽癌分割方法。针对训练样本,需要由有经验的放射科肿瘤医师对若干鼻咽癌病例进行标注,使用整个三维MRI图像建立数据集,并对数据集进行一定的预处理,然后用网络对训练数据集进行训练,取得高精度的分割模型。对于新的病例,可以用该分割模型分割其MRI图像。相对传统的方法,除了训练阶段需要人工标注外,其余部分均可实现自动处理,大大降低对于有经验医师的需求,且与五种主流网络对比能取得较高的精度。
-
-
-