一种基于多行为会话图融合的推荐方法

    公开(公告)号:CN113868537B

    公开(公告)日:2022-07-05

    申请号:CN202111212853.8

    申请日:2021-10-19

    Abstract: 一种基于多行为会话图融合的推荐方法,使用目标用户和相似用户的联合多行为序列数据构建多行为带权无向会话图。在此基础上,根据不同权重聚合邻居信息得到项目多行为嵌入,串联项目多行为嵌入并结合注意力机制获取用户兴趣表征。最终,使用项目嵌入和用户兴趣表征进行内积得到归一化分数决定是否推荐项目。相较其他会话型推荐方法,一是从建模用户多行为序列数据,能够得到包含更多行为意图的项目嵌入;二是将序列构建为带权无向图,解除了聚合邻居信息时的单向束缚,模型能学习到项目间的双向关系;三是使用相似用户补充目标用户数据,模型能够学习到没有出现在目标用户历史数据中的“新颖”的项目,进而提高推荐结果的多样性和准确性。

    基于成对样本匹配的迁移学习方法

    公开(公告)号:CN110555060A

    公开(公告)日:2019-12-10

    申请号:CN201910849336.8

    申请日:2019-09-09

    Abstract: 本发明属于图像分类和迁移学习技术领域,公开了一种基于成对样本匹配的迁移学习方法,实现了对基于不同域的样本内在关系的挖掘。具体包含以下步骤:(1)数据预处理,(2)基于迁移学习的双链模型构建,(3)实例归一化和批量归一化,(4)计算对比损失和最大均值距离损失。本发明的优点是通过结合实例归一化和批归一化同时进行学习,充分挖掘不同图像的风格和语义关联特性,实现在源域辅助下对少量目标域样本的高效识别。

    基于多尺度小波变换的心电图波形的形态识别方法

    公开(公告)号:CN110547786A

    公开(公告)日:2019-12-10

    申请号:CN201810555348.5

    申请日:2018-06-01

    Abstract: 一种基于多尺度小波变换的心电图波形的形态识别方法,通过本基于多尺度小波变换的心电图波形的形态识别方法,相对于传统的心电图识别,本发明可以更精准的定位峰值位置和范围所在,通过本融合算法可以有效减少由于选择检测尺度不当或是P/T形态多变条件下检测P/T波所造成的损失。特别是对P/T波异常的心电图有更好的检测效果。本发明算法具有容错性高、精确度高等特点,特别是在P/T波检测中,可以有效避免由于P/T波能量集中频率不一致造成的错检和漏检,有效减少因检测不当所造成的误诊等情况。

Patent Agency Ranking