-
公开(公告)号:CN114609315A
公开(公告)日:2022-06-10
申请号:CN202210258028.X
申请日:2022-03-16
Applicant: 安徽大学
Abstract: 本发明公开了一种在线烟气分析设备,包括点烟系统,所述点烟系统通过进样系统连接有分析系统,分析系统连接有数据采集系统;所述点烟系统包括封闭的燃烧室,燃烧室的顶部和底部依次设有与其连通的接气管一和接气管二,燃烧室上还可拆装连接有点烟单元,点烟单元的下方设有一收集管,收集管通过支管一延伸至燃烧室外与支管二连接。本发明将待分析香烟样品放入点烟单元内,通过接气管二将外接气体引入燃烧室内,使燃烧室内形成特定分析气氛,通过收集管收集到烟气存储单元;在烟气存储单元和进样系统之间设置阀三,能够调控进出气,并且接口端的密封垫片能够确保系统的密闭性。
-
公开(公告)号:CN114426399A
公开(公告)日:2022-05-03
申请号:CN202111495878.3
申请日:2021-12-08
Applicant: 安徽大学
Abstract: 本发明公开了一种半导体表面钝化用玻璃粉及其制备方法,涉及半导体表面钝化材料技术领域,其组成包括以下组分:ZnO、B2O3、SiO2、RxOy,RxOy为MgO、K2O、Al2O3中的一种或以上;其中,Zn、B、Si、R元素的摩尔百分比为:Zn 48~50%、B 25~28%、Si 20~21%、R 3~5%;其制备如下:将正硅酸四乙酯溶于乙醇中,然后加入乙酸调节pH,加热搅拌进行水解;然后加入硼酸继续水解;加入锌盐继续水解;加入R盐,然后加水调节pH至4~6,搅拌使其形成透明的湿凝胶,干燥,煅烧,研磨,即得玻璃粉。本发明的玻璃粉具备高粘附性能、低膨胀系数、电绝缘性能和化学稳定性好、玻璃化转变温度低、机械性能强等优点,制备方法能耗低、原料易得、对环境友好。
-
公开(公告)号:CN113548803A
公开(公告)日:2021-10-26
申请号:CN202110823152.1
申请日:2021-07-20
Applicant: 安徽大学
Abstract: 本发明研发了一种钝化保护半导体玻璃粉的制备方法,并且该玻璃粉能够用于防止半导体氧化,防止酸、碱和光腐蚀半导体等。本发明制备出的无铅低熔点玻璃粉,能够通过溶胶‑凝胶法进行合成,并且在空气气氛下煅烧形成具有粘附性能强的玻璃态致密层。在溶胶‑凝胶过程中通过引入助剂能够进一步改善玻璃粉的玻璃化转变温度。本发明通过采用溶胶‑凝胶法合成R‑Al2O3‑B2O3‑SiO2‑Bi2O3玻璃粉,为钝化保护半导体材料提供了一种新的思路。
-
公开(公告)号:CN113171775A
公开(公告)日:2021-07-27
申请号:CN202110536316.2
申请日:2021-05-17
Applicant: 临涣焦化股份有限公司 , 安徽大学
IPC: B01J23/745 , C10G2/00
Abstract: 本发明涉及催化剂技术领域,具体涉及一种用于费托合成反应的疏水型碳包裹铁基催化剂的制备方法,本发明利用水热法一步制得具有疏水性质的金属有机骨架材料MIL‑101(Fe)@NPG,然后对该材料进行煅烧处理,进而得到疏水性碳壳包覆的核壳型费托合成铁基催化剂。该催化剂能够有效避免费托合成反应过程生成的水进入催化剂内部,进而抑制水煤气变换反应,显著抑制C1副产物(二氧化碳和甲烷)的生成,提高对目标烃类产物的选择性,同时防止催化剂内部的活性相不被氧化,保证催化剂的活性和稳定性。且制备简单易操作、重复性好,所用原料简单易得、价格低廉,适用于大规模生产。
-
-
公开(公告)号:CN118374295A
公开(公告)日:2024-07-23
申请号:CN202410166945.4
申请日:2024-02-06
Applicant: 临涣焦化股份有限公司 , 安徽大学
Abstract: 本发明涉及了一种富介孔结构碳载体负载钴基催化剂在费托合成反应中的应用,并且将该催化剂用于一氧化碳加氢反应体系(费托反应),该催化剂命名为A‑Co/NC‑X‑Y,其制备方法如下:以四水合硝酸钴为钴源,2‑氨基对苯二甲酸为碳源和氮源及配体,通过水热反应然后在马弗炉中煅烧后获得用于费托反应的钴基催化剂。2‑氨基对苯二甲酸作为碳源在煅烧过程中会发生碳化,而同时作为氮源在煅烧过程会释放出氮氧化物,这有助于形成富介孔的碳载体材料。本发明使用的制备流程简单,生产成本低廉,获得了富介孔碳材料的钴基催化剂,为一氧化碳选择性加氢制取高经济价值产物产业化提供了潜在的方案。
-
公开(公告)号:CN115569660B
公开(公告)日:2024-02-06
申请号:CN202211308846.2
申请日:2022-10-25
Applicant: 安徽大学
Abstract: 本发明提供了一种以CuFeO2@GO为前驱体的高分散二氧化碳加氢催化剂及其制备方法和应用。所述制备方法,包括以下步骤:S1)将铁盐和铜盐在溶剂中混合至均一溶液,将沉淀剂加入上述溶液中,搅拌至沉淀剂全部溶解,得到悬浮液;S2)将氧化石墨烯加入到上述悬浮液中,搅拌均匀后,加入还原剂,得到溶液体系;S3)将上述溶液体系进行水热反应,得到高分散的CuFeO2@GO。本发明在水热反应中加入氧化石墨烯,有效抑制了CuFeO2颗粒的团聚现象。所制备的催化剂制备周期短、原料简单易得、还原时间较短,对于二氧(56)对比文件US 2015307356 A1,2015.10.29张奥亚等.新型石墨烯基、碳管基复合材料的制备及其电化学传感的应用研究《.中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》.2018,(第2期),第二章第1.2.2节.张奥亚等.CuFeO2/氧化石墨烯复合材料的制备及其对亚硝酸盐的电化学测定《.分析科学学报》.2018,第34卷(第5期),全文.Yucheng Dong et al..Facilehydrothermal synthesis of CuFeO2hexagonal platelets/rings and graphenecomposites as anode material for lithiumion batteries.Facile hydrothermalsynthesis of CuFeO2 hexagonal platelets/rings and graphene composites as anodematerial for lithium ion batteries.2014,第50卷第10151-10154页.Yo Han Choi et al..Carbon dioxideFischer-Tropsch synthesis: A new path tocarbon-neutral fuels《.Applied CatalysisB: Environmental》.2016,第202卷第605-610页.
-
公开(公告)号:CN117482969A
公开(公告)日:2024-02-02
申请号:CN202311438564.9
申请日:2023-11-01
Applicant: 安徽大学
Abstract: 本发明公开了一种“三明治”结构二氧化碳加氢制轻质汽油催化剂及其制备方法和应用,制备方法包括如下步骤:将铁盐和铜盐加入到溶剂中形成金属盐溶液,加入沉淀剂,搅拌形成悬浮液a;加入还原剂a,随后进行水热反应,得到CuFeO2;将还原剂b加入到溶剂中形成还原剂溶液,然后加入氧化石墨烯,再加入CuFeO2,得到悬浮液b;将悬浮液b经搅拌和超声后,进行微波处理,将产物洗涤、干燥,即得;该催化剂具有独特的层状结构,CuFeO2颗粒分散锚定在氧化石墨烯的片层结构中,对轻质汽油组分的选择性高达89.6%,同时具有较高的CO2转化率,副产物甲烷和CO的选择性较低,成本低廉,制备简便,易于工业化生产。
-
公开(公告)号:CN117225419A
公开(公告)日:2023-12-15
申请号:CN202311151212.5
申请日:2023-09-07
Applicant: 安徽大学
IPC: B01J23/755 , B01J37/02 , B01J37/18 , C07C209/36 , C07C211/52
Abstract: 本发明涉及一种高选择性催化剂Ni‑TiO2‑P25及其制备方法和在非均相体系中光热协同催化对氯硝基苯选择性加氢的应用,属于催化加氢领域。该催化剂以四水合乙酸镍为镍源,P25型TiO2为载体,采用浸渍法在P25型的TiO2上负载活性金属Ni,放在管式炉中氢气还原,得到催化剂Ni‑TiO2‑P25。其中负载量为光电流密度为3.5%0.的4W/cmNi‑TiO‑1全光谱照射2‑P25催化剂具有优异的催化性能,催化剂50mg,对氯硝基苯,在2g,氢气压力3MPa、温度80℃、反应3.5h的转化率达到100%,且选择性达到了99.9%以上。该制备方法简单,成本低廉、催化加氢速率快,目标产物选择性高,且易于分离具有产业化前景。
-
公开(公告)号:CN117138783A
公开(公告)日:2023-12-01
申请号:CN202311101928.4
申请日:2023-08-30
Applicant: 安徽大学
Abstract: 本发明公开了一种β分子筛包裹双黄蛋型结构的催化剂及其制备方法和应用,本发明通过对Cu/ZrO2催化剂表面进行修饰,对其包覆一层保护膜形成核壳结构,这种特殊的外包覆层对金属纳米粒子有包覆稳定作用,核壳构造中的内核金属粒子经外壳层包覆后,纳米颗粒的表面电性不仅得到空前提高,而且相应的表面活性也随之呈增长趋势,为降低纳米粒子之间发生凝聚提供了良好的前提条件;再者,通过将内核金属粒子和外部环境分离,使得内核金属粒子得到有效保护,免受外部环境的影响,阻止了被包覆的内核粒子发生额外的氧化和水解反应的可能性,解决了在空气这个外部环境下,金属粒子不能稳定存在的这一难题。
-
-
-
-
-
-
-
-
-