一种光动力生发帽子
    11.
    发明公开

    公开(公告)号:CN109173075A

    公开(公告)日:2019-01-11

    申请号:CN201811105784.9

    申请日:2018-09-21

    Applicant: 复旦大学

    Abstract: 本发明属于光动力医疗技术领域,具体为一种光动力生发帽子。其包括帽子外层,光纤织物内层,光纤集成器以及光源与电源集成系统;光纤织物内层整体呈半球状型,其内嵌于帽子外层内与帽子外层相贴合,光纤集成器和光源与电源集成系统相连接。本发明的光动力生发帽子采用一体化设计,重量轻盈,价格低廉。其由光纤传导,无紫外及红外辐射危险,无射频电磁危险,最大限度减少了不良反应。

    一种微流控自动分选及组分智能鉴定系统

    公开(公告)号:CN110895237B

    公开(公告)日:2024-05-28

    申请号:CN201911298294.X

    申请日:2019-12-17

    Applicant: 复旦大学

    Abstract: 本发明公开了一种微流控自动分选及组分智能鉴定系统。该系统包括液滴芯片、上样和储存单元、颗粒图像检测单元、颗粒组分鉴定单元和载物台自动移位装置;上样和储存单元的上方依次设置颗粒图像检测单元和多个颗粒组分鉴定单元;载物台自动移位装置包括载物台和芯片位移轨道,载物台上搭载液滴芯片,载物台设置在芯片位移轨道上,芯片位移轨道分别和上样和储存单元、颗粒图像检测单元及颗粒组分鉴定单元相连;本发明的系统可实现对微量溶液中颗粒的连续自动化计数,粒度分布和图像识别,分选和收集,以及组分智能多功能分析鉴定。

    荧光寿命检测系统以及检测方法
    13.
    发明公开

    公开(公告)号:CN116026800A

    公开(公告)日:2023-04-28

    申请号:CN202111258438.6

    申请日:2021-10-27

    Applicant: 复旦大学

    Abstract: 一种荧光寿命检测系统以及检测方法,荧光寿命检测系统包括:标记单元,用于提供量子点,还用于利用量子点对检测物进行标记;发光单元,用于提供激发光,激发光投射至标记有量子点的检测物上,量子点能够产生荧光;光电探测器,用于探测量子点产生的荧光,收集荧光信号;时间相关单光子计数单元,用于根据荧光信号获得基于时间的荧光寿命数据。量子点能够根据检测物自身的微环境不同表现出不同的荧光寿命,从而通过对量子点产生的荧光进行探测,能够根据量子点的荧光寿命对检测物的微环境进行检测;而且,与检测物的自体荧光相比,量子点产生的荧光寿命更长,探测量子点产生的荧光所获得的荧光信号更强,能够降低检测难度、提高检测的准确性。

    基于主动随机调制激发光的超分辨显微成像方法及装置

    公开(公告)号:CN111007046B

    公开(公告)日:2022-12-20

    申请号:CN201911245622.X

    申请日:2019-12-07

    Applicant: 复旦大学

    Abstract: 本发明属于光学显微技术领域,具体为一种基于主动随机调制激发光的超分辨显微成像方法及装置。本发明采用可控制的阵列光源调制激发光源,阵列光源的每个发光单元都可以进行随机且独立的亮暗调制使得激发光经调制形成随机且独立闪烁点阵光场。激发光经过显微成像系统照射在待测样品上,激发样品中的荧光点产生涨落特征明显的荧光信号,最终荧光信号通过高性能电荷耦合器件采集上百幅按照时间序列排布的原始图像,利用高阶相关性算法进行图像处理,最后形成超分辨图像。本发明只需要改变激发光源的设置就能实现高阶的运算,获得分辨率更高的样本图像,操作简单,成本低,应用范围广,可应用于各种利用荧光信号实现光学成像的生物研究。

    一种单个活细胞内RNA出核流量的监测方法和系统

    公开(公告)号:CN110993030A

    公开(公告)日:2020-04-10

    申请号:CN201911144055.9

    申请日:2019-11-21

    Applicant: 复旦大学

    Inventor: 马炯 景越悦 糜岚

    Abstract: 本发明属于分子生物学检测技术领域,具体为一种单个活细胞内RNA出核流量的监测方法及系统。本发明方法包括基因标记、RNA出核流量模型的构建和计算;所述的基因标记,包括在目标基因上进行基因编辑,用于标定目标检测基因,还包括构建合成示踪基因片段,用于表达示踪蛋白特异性结合目标基因及荧光显微监测;构建荧光显微监测过程中示踪蛋白在单个真核生物活细胞核内外的动态平衡模型;根据该动态平衡模型,即可计算监测期内单个或细胞中RNA出核流量。本发明系统包括用户自定义监测变量输入的功能模块,荧光显微图像读取功能模块,荧光图像中真核生物受体细胞的分选、统计功能模块,图像数据处理功能模块。

    一种基于图像梯度方差分析的序列图像超分辨修正方法

    公开(公告)号:CN113658056B

    公开(公告)日:2024-04-26

    申请号:CN202110792583.6

    申请日:2021-07-14

    Applicant: 复旦大学

    Abstract: 本发明公开了一种基于图像梯度方差分析的序列图像超分辨修正方法。本发明用于处理光学显微镜拍摄的荧光序列图像,图像的灰度值分布反映了荧光信号强度的分布,其随时间变化记录了时序波动特征。本发明首先分析序列图像两种信息:其一为,针对荧光强度分布,分析每个像素点自身荧光强度随时间变化的方差;其二为,计算荧光强度梯度场,并分析每个像素点的荧光强度梯度随时间变化的方差,然后用两种方差定义权重函数,对原始序列图像进行加权修正。最后对修正后图像序列进行SRRF分析,得到背景噪声小,伪影减弱,分辨能力增强的超分辨样品荧光图像。本方法适用性广泛,可以用于普通宽场、共聚焦成像,结构光照明成像等。

    一种单个活细胞内RNA出核流量的监测方法和系统

    公开(公告)号:CN110993030B

    公开(公告)日:2023-05-02

    申请号:CN201911144055.9

    申请日:2019-11-21

    Applicant: 复旦大学

    Inventor: 马炯 景越悦 糜岚

    Abstract: 本发明属于分子生物学检测技术领域,具体为一种单个活细胞内RNA出核流量的监测方法及系统。本发明方法包括基因标记、RNA出核流量模型的构建和计算;所述的基因标记,包括在目标基因上进行基因编辑,用于标定目标检测基因,还包括构建合成示踪基因片段,用于表达示踪蛋白特异性结合目标基因及荧光显微监测;构建荧光显微监测过程中示踪蛋白在单个真核生物活细胞核内外的动态平衡模型;根据该动态平衡模型,即可计算监测期内单个或细胞中RNA出核流量。本发明系统包括用户自定义监测变量输入的功能模块,荧光显微图像读取功能模块,荧光图像中真核生物受体细胞的分选、统计功能模块,图像数据处理功能模块。

    一种DNA纳米结构标记细胞目的蛋白的荧光染色方法

    公开(公告)号:CN113514429B

    公开(公告)日:2022-11-18

    申请号:CN202110249529.7

    申请日:2021-03-08

    Abstract: 本发明属于超分辨显微成像技术领域,具体为一种DNA纳米结构标记细胞目的蛋白的荧光染色方法。其用链霉亲和素作中间物,将DNA纳米结构和修饰有生物素的目的蛋白的抗体连接在一起,从而标记目的蛋白;其中:所述DNA纳米结构上同时修饰有生物素、锚定在水凝胶上的基团和两个以上荧光染料分子。本发明的DNA纳米结构除修饰同一种染料时,其亮度非常高,得到的显微图片质量会大幅提高。当修饰STED超分辨显微技术优势染料时,则膨胀显微技术能够与STED超分辨技术很好地结合。当修饰荧光共振能量转移的染料对时,能使DNA纳米结构有闪烁的性质,使膨胀显微技术更加方便地与STORM和SOFI超分辨技术结合。

    一种基于图像梯度方差分析的序列图像超分辨修正方法

    公开(公告)号:CN113658056A

    公开(公告)日:2021-11-16

    申请号:CN202110792583.6

    申请日:2021-07-14

    Applicant: 复旦大学

    Abstract: 本发明公开了一种基于图像梯度方差分析的序列图像超分辨修正方法。本发明用于处理光学显微镜拍摄的荧光序列图像,图像的灰度值分布反映了荧光信号强度的分布,其随时间变化记录了时序波动特征。本发明首先分析序列图像两种信息:其一为,针对荧光强度分布,分析每个像素点自身荧光强度随时间变化的方差;其二为,计算荧光强度梯度场,并分析每个像素点的荧光强度梯度随时间变化的方差,然后用两种方差定义权重函数,对原始序列图像进行加权修正。最后对修正后图像序列进行SRRF分析,得到背景噪声小,伪影减弱,分辨能力增强的超分辨样品荧光图像。本方法适用性广泛,可以用于普通宽场、共聚焦成像,结构光照明成像等。

    一种亚毫秒级实时三维超分辨显微成像系统

    公开(公告)号:CN110231320B

    公开(公告)日:2021-06-22

    申请号:CN201910487662.9

    申请日:2019-06-05

    Applicant: 复旦大学

    Inventor: 马炯 刘晓兰

    Abstract: 本发明属于单分子成像技术领域,具体涉及一种亚毫秒级实时三维超分辨显微成像系统。本发明系统包括:第一物镜、第二物镜、第一平面、第二平面、第一平面镜、凹面镜、第二平面镜、EMCCD;本发明在基本倒置荧光显微镜高速二维探测系统的基础上,通过搭建第二物镜,收集上半球面的荧光信号至第二平面,再由第二平面上的凹面镜返还至样品平面;经过第二物镜放大后,使单分子信号离凹面镜的中心轴的距离与凹面镜焦距的量级相近,达到垂直方向的最佳测量精度。

Patent Agency Ranking