一种微博事件信息传播的连续动态预测方法

    公开(公告)号:CN107784387B

    公开(公告)日:2021-10-08

    申请号:CN201710843010.5

    申请日:2017-09-18

    Abstract: 本发明公开了一种微博事件信息传播的连续动态预测方法,属于数据挖掘领域。针对新浪微博,在目前给定传播信息的基础上,试图预测下一阶段的微博总数量;按小时划分事件传播,利用事件从发生到当前时间段内传播特征,如微博量、参与人数、微博情绪等,基于GBDT模型预测下一小时内事件微博传播的总数。本发明预测模型中最优时间段长度和微博特征组合,是在全面衡量各特征的贡献度和相关性的基础上筛选出来的,不仅能够有效提高模型预测精度,平均模型精度超过70%,还能减小计算复杂性,避免无用计算,有效支持针对事件的预警和干预措施。

    基于社交网络的用户群体消息传播异常分析方法及装置

    公开(公告)号:CN109145109A

    公开(公告)日:2019-01-04

    申请号:CN201710464424.7

    申请日:2017-06-19

    CPC classification number: G06Q50/01

    Abstract: 本发明涉及一种基于社交网络的用户群体消息传播异常分析方法和装置,包括:获取在线社交网络中用户群体的历史聊天记录,根据预先设定的时间跨度,获取历史聊天记录在时间跨度内用户群体中所有用户所发布的消息,作为消息集合;对于消息集合,根据预先设定的时间范围统计用户群体在每个时间范围内所发布的消息总数;基于时序相关性的特征提取法,对每个消息总数的特征进行提取,并将提取结果集合为样本集合;根据消息总数并采用聚类算法为样本集合对样本集合进行聚类,生成异常样本;根据异常样本判定其所在的用户群体存在消息传播异常。由此本发明能够应对数据涌发现象,同时算法直观简单,准确率更高,且本发明应用场景广泛。

Patent Agency Ranking