一种面向视频内容的多模态检索方法

    公开(公告)号:CN114385859B

    公开(公告)日:2024-07-16

    申请号:CN202111631648.5

    申请日:2021-12-29

    Abstract: 本发明公开了一种面向视频内容的多模态检索方法,属于多媒体分析与处理技术领域。本方法面向视频内容,对视频数据和检索数据中的多模态特征进行提取和转化,将多模态特征转化为文本特征,然后通过对文本特征的检索实现对视频内容的检索与定位。本方法充分利用了视频内容中的多模态特征,并支持利用多模态数据进行检索,方便用户以多种方式进行针对视频内容的检索,使无标注情况下针对视频内容的检索更加准确全面。本方法极大方便了用户以多种形式在海量视频数据中快速寻找到自己感兴趣的内容,可以在海量无标注视频中找到用户所感兴趣的内容,节约了人工观看视频进行筛选的时间,可用于视频敏感内容筛选、目标人锁定等,实现数据的高效利用。

    一种基于图表示学习的知识图谱跨语言对齐方法

    公开(公告)号:CN114443855A

    公开(公告)日:2022-05-06

    申请号:CN202210020693.5

    申请日:2022-01-10

    Abstract: 本发明涉及一种基于图表示学习的知识图谱跨语言对齐方法,属于自然语言处理技术领域。在知识图谱构建阶段,通过爬取网站数据作为来源。然后,过滤筛选多语言实体并抽取其结构化数据组成三元组,构建知识图谱。在对齐阶段,通过图表示学习,将不同来源的知识图谱生成对应的嵌入矩阵,在图嵌入基础上,依靠已对齐实体,将不同语言知识图谱中的实体合并到统一的空间中,并根据实体在联合语义空间中的距离进行对齐。本方法充分利用了知识图谱结构信息,通过图表示学习方法将不同语言知识图谱中的实体合并到统一的空间中,并根据实体在联合语义空间中的距离进行对齐,保证了融合后的数据更准确全面,提高了在跨语言领域进行快速分析和智能搜索的效率。

    一种基于开源时空数据的时空目标描述文字生成方法

    公开(公告)号:CN114707511B

    公开(公告)日:2024-06-18

    申请号:CN202210275512.3

    申请日:2022-03-21

    Abstract: 本发明涉及一种基于开源时空数据的时空目标描述文字生成方法,属于时空数据分析与挖掘技术领域。本方法通过分析时空目标数据的特点,经过数据清洗、行为描述短语生成、位置描述短语生成和目标描述生成,提取时空目标活动轨迹的语义信息,生成目标活动状态文字描述,可用于时空数据语义理解等。本方法能够对不含显示语义信息的时空数据进行理解,能够准确、高效地分析时空数据中各时空目标的行为模式,并能够准确识别时空数据在地图上所经过的地理位置,不依赖于在线网络,可以实现面向海量时空数据的快速语义感知,为时空数据语义分析提供技术支撑。本发明拓展了时空数据的应用范围,具有良好的应用前景。

    一种基于多句压缩的无监督科技情报摘要自动生成方法

    公开(公告)号:CN114706972B

    公开(公告)日:2024-06-18

    申请号:CN202210275509.1

    申请日:2022-03-21

    Abstract: 本发明涉及一种基于多句压缩的无监督科技情报摘要自动生成方法,属于自然语言生成技术领域。针对科技情报领域的多文档文本生成,首先基于LDA主题相似度词库扩展方法的主题爬虫来获取源数据。通过文本信息的权威性、时效性、内容相关性三个指标的文本信息价值评估模型,对所有文本段落进行排序。选取得分较高段落的作为生成最终科技情报的原始文本。最后,采用基于谱聚类和多句压缩的无监督多文档摘要方法,自动生成科技情报摘要。本方法有效解决了在数据筛选过程中,科技情报生成对于数据时效性以及权威性要求较高的问题,以及科技情报领域由于数据集缺乏导致传统基于神经网络多文档生成方法无法应用的问题。

    一种基于开源时空数据的时空目标描述文字生成方法

    公开(公告)号:CN114707511A

    公开(公告)日:2022-07-05

    申请号:CN202210275512.3

    申请日:2022-03-21

    Abstract: 本发明涉及一种基于开源时空数据的时空目标描述文字生成方法,属于时空数据分析与挖掘技术领域。本方法通过分析时空目标数据的特点,经过数据清洗、行为描述短语生成、位置描述短语生成和目标描述生成,提取时空目标活动轨迹的语义信息,生成目标活动状态文字描述,可用于时空数据语义理解等。本方法能够对不含显示语义信息的时空数据进行理解,能够准确、高效地分析时空数据中各时空目标的行为模式,并能够准确识别时空数据在地图上所经过的地理位置,不依赖于在线网络,可以实现面向海量时空数据的快速语义感知,为时空数据语义分析提供技术支撑。本发明拓展了时空数据的应用范围,具有良好的应用前景。

    一种基于线性约束矫正网络的场景文字识别方法

    公开(公告)号:CN113435436A

    公开(公告)日:2021-09-24

    申请号:CN202110619690.9

    申请日:2021-06-03

    Abstract: 本发明公开了一种基于线性约束矫正网络的场景文字识别方法,属于图像文本识别检测技术领域。本方法通过卷积网络对文本图像提取几何特征,得到空间变换参数,基于空间变换网络得到的参数,对倾斜文本图像进行分割,得到水平文本图像;利用校正后水平文本图像进行文字识别,提取图像特征。利用序列编解码网络和注意力机制进行文字识别,得到识别后的文本序列。将预测输出与目标进行损失计算,并更新网络参数。本方法矫正所需空间变换参数更灵活,可实现更复杂变换。空间变化网络输出的控制点被约束在一系列间距相同的边上,矫正后的图片更平滑,减少对后续任务的干扰。空间变换网络与特征提取层共享参数信息,在减少参数量的同时,提高了模型表现。

    一种获取多层次上下文语义的文本分类方法

    公开(公告)号:CN111026845B

    公开(公告)日:2021-09-21

    申请号:CN201911246473.9

    申请日:2019-12-06

    Abstract: 本发明涉及一种获取多层次上下文语义的文本分类方法,属于自然语言处理文本分类技术领域。使用稠密连接的双向循环神经网络Bi‑LSTM获取多层次的上下文语义,使用卷积神经网络CNN的max‑pooling层对抽取的多层次上下文语义进行语义特征提取,再将文本中每个词的词向量和该词的多层次上下文语义特征向量进行连接得到的结果输入到分类层,实现文本分类。所述方法最大程度的保留了上下文语义信息;每个中间层都能获取到一定层次的语义,且将当前层获得的语义传递到下一层,获取更深层次的语义;极大的降低了神经网络梯度消失的概率;既保留了卷积神经网络特征抽取能力强的优点,又省去了卷积层,从而降低了训练参数和时间复杂度。

    一种获取多层次上下文语义的文本分类方法

    公开(公告)号:CN111026845A

    公开(公告)日:2020-04-17

    申请号:CN201911246473.9

    申请日:2019-12-06

    Abstract: 本发明涉及一种获取多层次上下文语义的文本分类方法,属于自然语言处理文本分类技术领域。使用稠密连接的双向循环神经网络Bi-LSTM获取多层次的上下文语义,使用卷积神经网络CNN的max-pooling层对抽取的多层次上下文语义进行语义特征提取,再将文本中每个词的词向量和该词的多层次上下文语义特征向量进行连接得到的结果输入到分类层,实现文本分类。所述方法最大程度的保留了上下文语义信息;每个中间层都能获取到一定层次的语义,且将当前层获得的语义传递到下一层,获取更深层次的语义;极大的降低了神经网络梯度消失的概率;既保留了卷积神经网络特征抽取能力强的优点,又省去了卷积层,从而降低了训练参数和时间复杂度。

    一种基于图表示学习的知识图谱跨语言对齐方法

    公开(公告)号:CN114443855B

    公开(公告)日:2025-05-06

    申请号:CN202210020693.5

    申请日:2022-01-10

    Abstract: 本发明涉及一种基于图表示学习的知识图谱跨语言对齐方法,属于自然语言处理技术领域。在知识图谱构建阶段,通过爬取网站数据作为来源。然后,过滤筛选多语言实体并抽取其结构化数据组成三元组,构建知识图谱。在对齐阶段,通过图表示学习,将不同来源的知识图谱生成对应的嵌入矩阵,在图嵌入基础上,依靠已对齐实体,将不同语言知识图谱中的实体合并到统一的空间中,并根据实体在联合语义空间中的距离进行对齐。本方法充分利用了知识图谱结构信息,通过图表示学习方法将不同语言知识图谱中的实体合并到统一的空间中,并根据实体在联合语义空间中的距离进行对齐,保证了融合后的数据更准确全面,提高了在跨语言领域进行快速分析和智能搜索的效率。

    一种基于知识追踪的个性化编程题推荐方法

    公开(公告)号:CN119271873A

    公开(公告)日:2025-01-07

    申请号:CN202411045781.6

    申请日:2024-08-01

    Abstract: 本发明涉及一种基于知识追踪模型的个性化编程题推荐方法,属于信息推荐技术领域。本方法通过知识追踪模型,将学习者的知识状态变化过程融合到编程题推荐过程中,使所推荐的编程题符合学习者当前的学习进程和学习能力。本发明提出了一种基于特征增强和注意力机制的知识追踪模型,充分利用编程题信息和学习者历史知识状态信息更准确地预测学习者未来的答题表现。结合上述模型,本发明采用了个性化编程题推荐策略,将学习者的知识状态变化情况融入推荐过程,从而推荐出符合学习者当前的学习进程和学习能力的编程题。本方法能够更加准确地预测学习者在下一个时间步的答题表现,使编程题推荐策略能够及时根据学习者的知识状态变化情况调整推荐题目。

Patent Agency Ranking