-
公开(公告)号:CN110781297A
公开(公告)日:2020-02-11
申请号:CN201910881086.6
申请日:2019-09-18
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种基于层次判别树的多标签科研论文的分类方法,包括:步骤一、获取标签已知的论文和标签,提取标签的特征词语集合,构建二元判别模型;步骤二、将标签更新为二元判别模型,得层次判别树模型;步骤三、获取标签未知论文的文本表征,输入到层次判别树模型中根节点的所有二元判别模型中,计算具有该节点对应标签的概率,若大于阈值,则输出该根节点对应的标签;输入至该标签对应的节点的子节点的所有二元判别模型中,计算具有该节点代表标签的概率,若大于阈值,则输出该子节点对应的标签,逐级判断,直至叶节点;输出的所有标签即为该论文的标签。本发明具有充分挖掘论文的特征词语,快速、准确对论文进行层次分类的有益效果。
-
公开(公告)号:CN110096575A
公开(公告)日:2019-08-06
申请号:CN201910375599.X
申请日:2019-05-07
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
IPC: G06F16/33 , G06F16/958 , G16H10/20 , G16H20/70
Abstract: 本发明公开了一种面向微博用户的心理画像方法,包括:步骤一、在微博平台上选取样本用户,根据设定的心理学量表,利用调查问卷法获取样本用户的人格特征得分;步骤二、根据所述样本用户在微博平台上的文本信息,获取样本用户的文本表征,根据所述样本用户的行为信息,获取样本用户的行为表征;步骤三、根据样本用户的人格特征得分与文本表征和行为表征的对应关系,构建人格特征预测模型;步骤四、获取待测用户的文本表征和行为表征,根据人格特征预测模型,获得待测用户的人格特征。本发明能够实现对微博用户的人格特质的分析,为微博用户的心理画像提供技术支持。
-
公开(公告)号:CN107944559A
公开(公告)日:2018-04-20
申请号:CN201711190865.9
申请日:2017-11-24
Applicant: 国家计算机网络与信息安全管理中心
CPC classification number: G06N5/022 , G06N3/0454
Abstract: 本发明涉及一种实体关系自动识别方法及系统,该方法包括:训练卷积神经网络得到实体关系识别模型;获取对应待确认实体组的相关语料库;将相关语料进行分词,并将分词得到的相关词语转化为相关词向量;将相关词向量按相关语料转化为矩阵作为实体关系识别模型的输入,得到相关关系种类和相关关系种类的相似度值,将相似度值高的相关关系种类作为待确认实体组的关系种类。本发明通过锻炼卷积神经网络作为实体关系识别模型,在出现新增实体时,计算得到一系列新增实体组的关系种类,并得出每一项关系种类的相似度值,通过具体的数值来确定相关关系种类的程度,提高得到的新增实体组之间关系种类的准确性。
-
-