基于全卷积网络的多特征融合的目标检测方法

    公开(公告)号:CN107563381B

    公开(公告)日:2020-10-23

    申请号:CN201710816619.3

    申请日:2017-09-12

    Abstract: 本发明设计了一种基于全卷积网络的多特征融合的目标检测方法,其主要技术特点是:搭建具有六个卷积层组的全卷积神经网络;利用卷积神经网络的前五组卷积层提取图像特征,并将其输出进行融合,形成融合特征图;对融合后的特征图进行卷积处理,直接产生固定数目的不同大小的目标边框;计算卷积神经网络生成的目标边框与真实边框之间的分类误差与定位误差,利用随机梯度下降法降低训练误差,得到最终训练模型的参数,最后进行测试得到目标检测结果。本发明利用了深度卷积网络对目标的强大的表示能力,构建了用于目标检测的全卷积神经网络,提出了新的融合特征方法,提高了算法的检测速度和精度,获得了良好的目标检测结果。

    基于图的协同低高级特征的视频显著性检测方法

    公开(公告)号:CN105491370B

    公开(公告)日:2020-09-22

    申请号:CN201510799543.9

    申请日:2015-11-19

    Abstract: 本发明涉及一种基于图的协同低高级特征的视频显著性检测方法,属于视频检测技术领域,其技术特点是:使用改进的随机行走算法模拟人眼运动进行视频显著性检测。该方法从视频流中提取低级特征与高级特征,以超像素为基本单元,利用低级特征获得空域转移概率矩阵和时域重启矩阵,以边界优先作为一种高级特征获得基于边界先验的的重启矩阵。将两种重启矩阵与空域转移概率矩阵相结合到重启性随机行走算法的框架中获得时空域显著性图。本文将算法在两个公开数据库上进行了测试,实验结果表明该方法优于其它显著性检测算法。本发明设计合理,利用低级特征和高级特征构建重启性随机行走的框架,获得了与人眼注意机制高度相符的显著性检测结果。

    基于多特征和组稀疏的视觉目标跟踪方法

    公开(公告)号:CN106204647B

    公开(公告)日:2019-05-10

    申请号:CN201610515653.2

    申请日:2016-07-01

    Abstract: 本发明专利涉及一种基于多特征和组稀疏的视觉目标跟踪方法,其技术特点是:在视频当前帧中对目标进行多特征提取;利用多特征信息构造不同特征下的学习字典;在新视频帧中进行粒子采样;采用边界粒子重采样以去除不合格的粒子,然后对剩下的粒子求解稀疏优化方程;更新模板并考察本帧结果和最大系数模板的余弦相似度,如果相似度低于某一个值,则用当前模板替换系数最小的模板;若视频未结束,则重采样。本发明融合了多特征、粒子滤波、组稀疏学习技术,其通过跟踪物体的多种特征使得构造的字典中含有更丰富的目标信息,增加了整体算法的跟踪精度,提高了跟踪结果的稳定性,获得了很好的视觉目标跟踪结果。

    基于超特征融合与多尺度金字塔网络的目标检测方法

    公开(公告)号:CN109034210A

    公开(公告)日:2018-12-18

    申请号:CN201810721716.9

    申请日:2018-07-04

    Abstract: 本发明涉及一种基于超特征融合与多尺度金字塔网络的目标检测方法,包括利用深度卷积神经网络提取具有不同特征信息的分层多尺度特征图;进行超特征融合;构建新的多尺度金字塔网络;根据不同层分别构建不同大小和长宽比的目标候选框;构建一个新的用于多特征提取且能够防止梯度消失的卷积模块;利用多任务损失函数对多类别分类器和边界框回归器进行联合训练优化实现图像分类和目标定位功能。本发明利用深度卷积网络对目标的特征提取能力,考虑超特征融合方法改善特征表达能力,生成了一个新的模块防止梯度消失而且能更有效地帮助训练和提取特征,构建了用于目标检测的全卷积神经网络,提高了算法的检测精度,获得了良好的目标检测结果。

Patent Agency Ranking