-
公开(公告)号:CN114091531A
公开(公告)日:2022-02-25
申请号:CN202111341770.9
申请日:2021-11-12
Applicant: 哈尔滨工程大学
Abstract: 基于多尺度的环境特征提取方法,涉及水下声纹特征提取技术领域,针对现有技术中模型特征提取准确率低的问题,包括:步骤一:采集水声信号数据,并将水声信号数据的特征进行标记,之后利用标记后的水声信号数据构成数据集;步骤二:对数据集进行预处理,并将预处理后的数据集作为训练集;步骤三:利用训练集训练多尺度的环境特征提取网络模型;步骤四:利用训练好的多尺度的环境特征提取网络模型对水域环境的水声信号进行特征提取。本申请使用局部切这样更加均衡的切分方式,提高了模型特征提取的准确率。
-
公开(公告)号:CN107194404B
公开(公告)日:2021-04-20
申请号:CN201710237910.5
申请日:2017-04-13
Applicant: 哈尔滨工程大学
Abstract: 本发明提供的是一种基于卷积神经网络的水下目标特征提取方法。1、将原始辐射噪声信号的采样序列,分成25个连续部分,每个部分再设置25个采样点;2、将第j段数据信号的采样样本做归一化和中心化处理;进行短时傅里叶变换得到LoFAR图;4、将向量赋值到已有3维张量中;5、将得到特征向量输入到全连接层进行分类并计算与标签数据的误差,检查损失误差是否低于误差阈值,若低于则停止网络训练,否则进入步骤6;6、使用梯度下降方法对网络从后向前逐层进行参数调整,并转入步骤2。本发明方法的识别率与传统卷积神经网络算法相比,对特征图层进行了空间信息多维度的加权操作,来弥补因全连接层的一维向量化所带来的空间信息丢失的缺陷。
-
公开(公告)号:CN112541547A
公开(公告)日:2021-03-23
申请号:CN202011466539.8
申请日:2020-12-14
Applicant: 哈尔滨工程大学
Abstract: 支持水下快速目标识别的加权融合权重确定方法,本发明涉及加权融合权重确定方法。本发明涉及加权融合权重确定方法。过程为:1:n个传感器收集声音数据,将每个传感器收集的声音数据均分成m段;2:计算传感器间的传感器支持度和传感器相似性;3:计算传感器内的局部稳定性和局部支持度;4:基于熵权法计算熵权系数;5:计算准则指标的累积贡献率;6:确定各个声音信号段的准则指标;7:确定各个声音信号段对应的权重;8:将原始声音信号数据分为加速和匀速;分别给加速和匀速各一个权重,将加速和匀速的权重分别乘上声音信号段对应的权重,作为二阶权重;9:确定水下快速目标的类别。本发明用于水下快速目标识别领域。
-
公开(公告)号:CN107466072B
公开(公告)日:2020-11-10
申请号:CN201710599216.8
申请日:2017-07-21
Applicant: 哈尔滨工程大学
Abstract: 本发明提供了一种基于地理位置信息的多信道并行协商MAC协议实现方法,涉及多信道并行传输条件下的无线传感器网络领域,对原LPR‑MAC协议在多信道并行协商过程中存在的信道冲突问题进行了分析,利用节点地理位置信息这一关键因素给出LPRLI‑MAC协议的邻居表和P‑坚持算法,解决了多对多和多对一的信道冲突问题,优化了多个发送端在多信道上的并行协商策略,降低了多个并行传输间的冲突概率,提高了数据传输率。
-
公开(公告)号:CN111008674A
公开(公告)日:2020-04-14
申请号:CN201911351335.7
申请日:2019-12-24
Applicant: 哈尔滨工程大学
Abstract: 一种基于快速循环单元的水下目标探测方法,涉及水下声纹特征提取技术领域,针对现有技术中的水下目标探测技术存在探测精度低的问题,本发明在对水声信号样本分帧后的片段完成特征提取和特征选择后,将这些特征按时间顺序排列,从而得到由特征组成的时序数据,并利用循环神经网络对时序数据进行处理,以此提高了水下目标探测的准确率并减少了误报率。
-
公开(公告)号:CN106067029B
公开(公告)日:2019-06-18
申请号:CN201610348890.4
申请日:2016-05-24
Applicant: 哈尔滨工程大学
IPC: G06K9/62
Abstract: 面向数据空间的实体分类方法,属于自然语言处理领域。演化环境下,存在无法通过假设实体为静止状态,而对实体进行分类的问题。一种面向数据空间的实体分类方法,首先,针对演化的数据空间实体,提出改进的、演化的K‑Means聚类框架,即定义基于轮廓值和KL‑散度的目标代价函数;其次,设计了一种新颖的数据空间实体相似性度量方法;然后,根据启发式规则,提出演化的K‑Means聚类算法。此外,进一步扩展本章提出的演化聚类框架,以处理簇数量随时间发生变化或者快照实体随时间加入或移除的情况。本发明不仅能高质量地捕获当前实体聚类结果,还能健壮地反映历史聚簇情况。
-
公开(公告)号:CN105956012B
公开(公告)日:2019-04-23
申请号:CN201610251897.4
申请日:2016-04-21
Applicant: 哈尔滨工程大学
IPC: G06F16/28
Abstract: 基于图划分策略的数据库模式抽象方法,本发明涉及数据库模式抽象方法。本发明是要解决忽略了表与表之间的结构紧密性、用户查询偏好信息以及现有方法对模式抽象结果中主题类簇的个数无法做出准确预测的问题,而提出的基于图划分策略的数据库模式抽象方法。该方法是通过一、构建关系数据库的拓扑紧密性矩阵T;二、计算得到表间相似性矩阵ADB;三、得到最终的数据表ti和数据表tj间的相似性计算结果;四、得到最终的表重要性度量结果;五、利用类簇代表检测算法得到结果集合R;六、将数据表ti和数据表tj划分到主题类簇等步骤实现的。本发明应用于数据库模式抽象领域。
-
公开(公告)号:CN107592622A
公开(公告)日:2018-01-16
申请号:CN201710599176.7
申请日:2017-07-21
Applicant: 哈尔滨工程大学
Abstract: 本发明提出了一种基于地理位置信息的机会型并行传输MAC协议,引入地理位置信息这一要素,对局部并行映射表和并行控制算法两方面进行改进,提出了基于地理位置信息的机会型并行传输MAC协议。在此基础上,对并行映射表和并行控制算法的相应部进行了改进;发送端节点通过局部并行映射表的记录检索到所有可能受到自身干扰的两跳范围内的节点,并依次比较其与每个节点的距离值和自身传输半径之间的关系,满足条件的记录进入映射表中,在最大程度上排除受干扰节点的数量;接收端节点通过与多个发送端节点的距离比较,选取其中最小的一个进行数据通信,在解决隐藏终端问题的同时,提高数据传输的成功率。
-
公开(公告)号:CN107562778A
公开(公告)日:2018-01-09
申请号:CN201710599251.X
申请日:2017-07-21
Applicant: 哈尔滨工程大学
IPC: G06F17/30
Abstract: 本发明公开了一种基于偏离特征的离群点挖掘方法,包括以下步骤:(1)将数据集的各个维度划分为h个等间距的间隔,则整个数据集被划分为hd个网格;(2)将每个数据点与网格索引做一个关联,如果一个网格中不包含数据点,则不考虑该网格;(3)对于划分形成的空间中的各个网格,求出网格的质心,并计算质心的局部离群因子;(4)计算每个数据对象的局部离群因子,数据集中对象的局部离群因子等于所属网格质心的离群因子。本发明在检测数据集中的离群点时,采用F_LOF检测算法将数据空间划分为网格,基于网格的质心来计算数据点的局部离群因子,降低了计算时间,提高检测效率,表现出了其优越性。
-
公开(公告)号:CN107194468A
公开(公告)日:2017-09-22
申请号:CN201710259763.1
申请日:2017-04-19
Applicant: 哈尔滨工程大学
IPC: G06N99/00
CPC classification number: G06N20/00
Abstract: 本发明提供的是一种面向情报大数据的决策树增量学习方法。在分裂结点之前,把结点中每个候选属性的多个属性值分别合并成两组,选择信息增益最大的候选属性将结点分为两个分支。在选择下一个将要分裂的结点方面,为所有候选分裂结点计算对应的结点分裂度量值,并且总是选择结点分裂度量值最大的候选结点作为下一个分裂结点。IID5R增加了评估分类属性质量的功能。本发明将NOLCDT与IID5R相结合,提出了一个混合分类器算法HCS,主要有两个阶段组成:构建初始决策树和增量学习。根据NOLCDT建立初始决策树,然后使用IID5R进行增量学习。HCS算法综合了决策树以及增量学习方法的优点,既便于理解又适于增量学习。
-
-
-
-
-
-
-
-
-