-
公开(公告)号:CN112950584A
公开(公告)日:2021-06-11
申请号:CN202110226014.5
申请日:2021-03-01
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种基于深度学习的涂层表面缺陷识别方法,包括以下步骤:S1:选取特征提取网络;S2:设计倒金字塔型分类器;S3:构建识别模型;S4:使用优化调整后的训练方法训练识别模型;S5:对涂层表面缺陷进行识别。本发明提供的一种基于深度学习的涂层表面缺陷识别方法,能够在小样本情况下实现对涂层表面缺陷的快速高精度识别,在涂层表面缺陷自动化检测识别领域具有较好的使用前景。
-
公开(公告)号:CN112184838A
公开(公告)日:2021-01-05
申请号:CN202011072693.7
申请日:2020-10-09
Applicant: 哈尔滨工程大学
Abstract: 本发明一种基于颜色相关度的多背景迷彩图案主色提取方法,主要解决现有单一背景下迷彩图案主色提取方法难以满足多背景多地域迷彩伪装需求的问题。步骤包括:s1.选取待伪装区域的多张背景图像,图像预处理;s2.提取每张背景图像的背景主色,并计算所述背景主色的面积占比;s3.对每张背景图像的背景主色进行优先级排序,列出排序后的搜索路径;s4.根据颜色相关度度量函数选择搜索路径,进行背景主色配对;s5.对背景主色配对结果进行主色计算,得出最终的多背景迷彩图案主色和主色的面积占比。本发明方法计算复杂度低、实时性高,所提取的迷彩主色和背景颜色融合度高,能满足大区域动态环境下多背景迷彩图案设计精确主色提取的需要。
-