一种基于人脸均值和方差能量图的多姿态人脸识别方法

    公开(公告)号:CN103218606A

    公开(公告)日:2013-07-24

    申请号:CN201310122161.3

    申请日:2013-04-10

    Abstract: 本发明涉及的是一种生物特征身份识别技术,特别是涉及一种基于人脸均值和方差能量图的多姿态人脸识别方法。本发明包括:检测人脸区域对人脸区域图像做尺寸归一化;构建狭义人脸均值能量图和广义人脸均值能量图;构建狭义人脸方差能量图和广义人脸方差能量图;将获得的特征进行融合,获得最终的特征向量;由基于欧氏距离的最近邻分类器进行分类识别。本发明不仅能够很好的节省存储空间,降低计算的复杂度,而且能够弱化单帧图像中出现的噪声干扰,人脸能量图蕴含了多种姿态下的人脸轮廓信息,对于大角度姿态变化的人脸识别,人脸能量图具有很大优势,不需要补零处理,提高了多姿态人脸识别的性能。

    手背静脉模式纹理提取方法

    公开(公告)号:CN102393905B

    公开(公告)日:2013-04-10

    申请号:CN201110195542.5

    申请日:2011-07-13

    Abstract: 本发明的目的在于提供手背静脉模式纹理提取方法,采用Gabor滤波器组进行提取,包括以下步骤:设计Gabor滤波器组参数,在方向空间对滤波响应进行统计,得到方向空间最优滤波响应;计算方向空间最优滤波响应在尺度空间的静脉混合矩,可得到最后的手背静脉模式纹理。本发明能够解决对比度低、灰度值窄、灰度值分布不均匀、纹理模糊、纹理边缘较弱、交叉纹理粘连等问题。

    基于多尺度二阶微分结构模型滤波形态响应直接提取手背静脉模式骨架的方法

    公开(公告)号:CN102346845B

    公开(公告)日:2013-03-06

    申请号:CN201110273341.2

    申请日:2011-09-15

    Abstract: 本发明的目的在于提供基于多尺度二阶微分结构模型滤波形态响应直接提取手背静脉模式骨架的方法,包括以下步骤:对静脉纹理进行分析获取静脉纹理的形态响应、方向响应、尺度响应;提取脊点,形成离散的初始脊线段集;对初始脊线段集进行预处理;从所得到的脊线段集中提取出端点,并根据获取的静脉纹理方向响应获得端点延伸方向,对其进行延伸处理,以连接离散脊线段;从端点连接后的脊线段集中滤去孤立脊线段和悬浮脊线段,经此脊线后期处理后,即可得到最终静脉纹理骨架。本发明能够解决存在对比度低、灰度值窄、灰度值分布不均匀、纹理模糊、纹理边缘较弱、交叉纹理粘连等问题。

    基于区域特征分析的步态周期检测方法

    公开(公告)号:CN101564300B

    公开(公告)日:2011-03-16

    申请号:CN200910072171.4

    申请日:2009-06-03

    Abstract: 本发明提供的是一种基于区域特征分析的步态周期检测方法。包括行人目标轮廓的获取和步态周期检测;所述的行人目标轮廓的获取的方法为,首先从视频中提取单帧图像进行灰度变换,然后计算各像素点在逐帧中的中值,作为整个序列的背景图像,最后采用背景减除法提取人体目标,用数学形态学填补二值化图像的空洞、单连通分析提取人的侧影,使人体居中,将图像的大小统一为64*64像素;所述的步态周期检测是将步态周期分析问题转化为单帧的图形区域特征分析问题,即根据每帧中图形区域的特征变化情况来分析步态的周期。本发明不但计算量小,而且已经达到人主观判断步态周期的精度,为实时的步态识别提供了可能。

    基于视频的正面步态周期检测方法

    公开(公告)号:CN101571917A

    公开(公告)日:2009-11-04

    申请号:CN200910072299.0

    申请日:2009-06-16

    Abstract: 本发明提供的是一种基于视频的正面步态周期检测方法。包括行人目标轮廓的获取和正面步态的周期检测;首先从视频中提取单帧图像进行灰度变换,然后选择不含人体的图像作为整个视频的原始背景图像,采用背景实时更新的背景减除法提取人体目标,Kapur熵阈值法对图像序列进行二值化处理,用数学形态学填补二值化图像的空洞、单连通分析提取人的侧影,使人体居中,将图像的大小统一为64*64像素,最后对分割出的人体进行检测,将包含不完整人体的冗余帧去除;根据肢体占身高比例关系,将下臂的摇摆区域像素点的数目变化情况作为判断正面步态周期的依据。本发明针对正面步态周期检测十分有效,计算量小,节省大量的存储空间,为实时的步态识别提供了可能。

    一种基于人脸能量图的多姿态人脸识别方法

    公开(公告)号:CN102915435B

    公开(公告)日:2015-05-06

    申请号:CN201210407233.4

    申请日:2012-10-23

    Abstract: 本发明提供的是一种基于人脸能量图的多姿态人脸识别方法,其步骤是:第一步,读取多姿态人脸图像及人脸区域检测;第二步,构建人脸能量图;第三步,人脸能量图增强预处理;第四步,人脸能量图的二次特征提取;第五步,分类识别。本发明提供一种能够有效提取俯仰变化和左右摇摆变化情况下人脸的关键信息,使识别效果得到较大改善,提高了人脸识别系统的性能的一种基于人脸能量图的多姿态人脸识别方法。

    基于多尺度二阶微分结构模型及改进分水岭算法的手背静脉识别方法

    公开(公告)号:CN102622587A

    公开(公告)日:2012-08-01

    申请号:CN201210059350.6

    申请日:2012-03-08

    Abstract: 本发明提供的是基于多尺度二阶微分结构模型及改进分水岭算法的手背静脉识别方法。利用基于手背目标外部轮廓分析的方法从原始样本中提取出静脉样本的ROI区域;基于多尺度VLSDM模型对ROI区域的静脉图像进行多尺度分析,得到静脉纹理的形态响应、方向响应及尺度响应;利用改进分水岭算法从第二步所得形态响应中提取出静脉纹理骨架特征;利用链码及方向空间采样编码描述静脉纹理骨架的结构特征及方向特征,并利用改进的模板匹配方法对特征进行匹配。本发明解决样本旋转和平移对识别影响、加快算法匹配速度等问题,且该方法的效率符合模式识别系统的要求。

    基于指纹和手指静脉的双模态生物图像采集装置

    公开(公告)号:CN101464947A

    公开(公告)日:2009-06-24

    申请号:CN200910071283.8

    申请日:2009-01-16

    Abstract: 本发明提供的是一种基于指纹和手指静脉的双模态生物图像采集装置。它包括外壳,外壳的上表面中间有一平底凹槽,凹槽的顶部有一斜面,凹槽前后端安装电极,凹槽的两个侧壁安装静脉图像采集红外光源,外壳底部与凹槽的顶部的斜面部分相对应的位置安装有指纹图像采集红光源和指纹图像采集器,外壳底部与凹槽相对应的位置安装有红外接收器和静脉图像采集器,外壳内设置为电极、温度传感器、红光源、红外光源、红外接收器、图像采集器供电或提供信号传递的电源和控制电路。本发明的装置进行图像信息采集的生物特征识别系统,其性能好于仅基于指纹或静脉的单模态生物特征识别系统。采用同时对指纹和手静脉进行图像采集的双光路系统,提高采集速度。

    中文印刷体公式识别方法
    20.
    发明公开

    公开(公告)号:CN101149790A

    公开(公告)日:2008-03-26

    申请号:CN200710144588.8

    申请日:2007-11-14

    Abstract: 本发明提供的是一种中文印刷体公式识别方法。包括版面分析、汉字识别和数学公式识别3个模块,版面分析模块是对待识别的BMP图像进行各项预处理二值化,并利用投影法结合自底向上的版面分析算法,分割出文字块、图像块、表格块,对图像块和表格块进行保存处理;汉字识别模块是针对文字块进行虚假行合并、选择切分参数、提取特征和对汉字识别,将拒识的结果记录下来,把同行相邻的拒识结果合并这样可以定位出公式区域;数学公式识别是将拒识出来的文字区域中的公式字符进行提取、分割、合并一些合成字符、识别;最后通过公式字符的结构分析,得出字符间的关系;并最终输出结果为一维的字符串。经过试验证明本发明的识别效果还是令人满意的。

Patent Agency Ranking