一种人脸检测方法
    11.
    发明授权

    公开(公告)号:CN103226698B

    公开(公告)日:2016-01-27

    申请号:CN201310131911.3

    申请日:2013-04-16

    Abstract: 本发明涉及的是生物特征身份识别领域,特别是涉及一种人脸检测方法。本发明包括下列步骤:读取原始人脸图像;对原始人脸图像进行人脸光照预处理;采用AdaBoost检测候选人脸区域;计算相似度图确认人脸区域图像。本方法在保证检测速度的同时,大大减少了目标区域的误检率,提高了人脸检测的准确率。

    一种基于数据集合并的特征级融合方法

    公开(公告)号:CN104899604A

    公开(公告)日:2015-09-09

    申请号:CN201510306292.6

    申请日:2015-06-08

    CPC classification number: G06K9/627

    Abstract: 本发明公开了一种基于数据集合并的特征级融合方法。包括训练过程和识别过程,从两个传感器分别获取数据集,基于耦合映射方法的特性将耦合空间里的所有数据合并为同一个数据集,其数据容量为原始两个集合的样本数之和,之后进行二次特征提取,得到一个最终所需的特征集合,而后加入常规特征级融合方法得到另一个更具分类判别能力的特征集合,从而提高模式识别系统的识别率。对任意形式的测试对象进行变换得到最终特征,并采用这一特征与训练特征集合里的特征进行匹配,得到识别结果。本发明能够扩大特征级融合的应用范围,提高识别率。

    基于最优判别耦合投影的多视角步态识别方法

    公开(公告)号:CN104217211A

    公开(公告)日:2014-12-17

    申请号:CN201410386741.8

    申请日:2014-08-07

    Abstract: 本发明提供的是一种基于最优判别耦合投影的多视角步态识别方法。对训练集里多个已知视角的步态视频序列进行提取,得到最优判别耦合投影矩阵对;对注册集中标准视角的步态视频序列进行提取、存储;对测试集中的多个步态视频序列进行提取和估计;将注册集中标准视角步态特征和测试集中步态特征通过视角估计选取的最优判别耦合投影矩阵对,投影到具有最优判别能力或最优类可分性的共同耦合步态特征空间中,并在其中进行相似性度量,得到步态识别结果。本发明将测试视角步态特征和注册标准视角步态特征投影到共同的最具判别能力的耦合空间中,使得测试步态视角与注册集中标准步态视角存在显著差异时,多视角步态识别系统仍能获得高识别率。

    一种人脸检测方法
    14.
    发明公开

    公开(公告)号:CN103226698A

    公开(公告)日:2013-07-31

    申请号:CN201310131911.3

    申请日:2013-04-16

    Abstract: 本发明涉及的是生物特征身份识别领域,特别是涉及一种人脸检测方法。本发明包括下列步骤:读取原始人脸图像;对原始人脸图像进行人脸光照预处理;采用AdaBoost检测候选人脸区域;计算相似度图确认人脸区域图像。本方法在保证检测速度的同时,大大减少了目标区域的误检率,提高了人脸检测的准确率。

Patent Agency Ranking