-
公开(公告)号:CN102903084B
公开(公告)日:2015-09-30
申请号:CN201210359004.X
申请日:2012-09-25
Applicant: 哈尔滨工程大学
IPC: G06T5/00
Abstract: 本发明的目的在于提供一种α稳定模型下的小波域图像噪声方差估计方法,包括对含噪图像进行小波域分解,进行α稳定模型下的原始系数参数估计,获得尺度参数和形状参数,从而获得原始系数的估计熵值;建立对角子带的含噪系数直方图,计算含噪系数熵值并记录子带系数熵值与原始系数熵值的熵值差、噪声方差的值;以步进量L更新噪声方差的值,重复上述步骤;对随机选取的1000幅不同图像重复上述过程,并计算在同一噪声标准差下的1000个熵值差的均值;建立噪声标准差与熵值差间的二次拟合关系获得拟合系数,从而获得方差估计表达式。本发明具有较强的鲁棒性,简化了模型参数估计和熵值的计算过程,易于计算和实现,具有更高的估计精度。
-
公开(公告)号:CN102426701A
公开(公告)日:2012-04-25
申请号:CN201110347609.2
申请日:2011-11-07
Applicant: 哈尔滨工程大学
IPC: G06T5/00
Abstract: 本发明的目的在于提供基于双树复小波变换和PCA的水下声纳图像的去噪方法,分为以下步骤:对一幅水下声纳图像应用双树复小波变换,将图像由空间域变换到复小波域,保持图像经三层双树复小波变换后获得的低频近似分量不变,对图像的高频分量进行处理,采用PCA方法估计高频子带中噪声的能量,从而确定阈值并采用硬阈值函数对复小波系数进行处理,对处理后的复小波系数进行双树复小波反变换,获得最终去噪后的图像。本发明克服了传统二维小波缺乏平移不变性和方向选择性的缺点,更好地捕捉图像的方向性信息,能够在去除噪声的同时,更好地保护图像的边缘、纹理等细节信息。
-