基于图表示学习的环状RNA-疾病关联预测方法

    公开(公告)号:CN117393143B

    公开(公告)日:2024-06-25

    申请号:CN202311316888.5

    申请日:2023-10-11

    Abstract: 本发明公开了一种基于图表示学习的环状RNA‑疾病关联预测方法、移动设备及存储介质,该方法包括:基于环状RNA及相关信息构建环状RNA的异构网络,所述异构网络包括环状RNA节点和疾病节点;将异构网络中各个节点的特征随机初始化后输入图表示学习模型,通过所述图表示学习模型按预设流程学习各个节点的表示向量;基于环状RNA节点的表示向量和疾病节点的表示向量的内积确定为对应环状RNA与疾病的关联预测得分。如此,通过图表示学习模型学习异构网络中各个节点的表示向量,再基于环状RNA节点和疾病节点的表示向量的内积确定关联预测得分,提高了异构网络构建的灵活性,使得图表示学习模型能获得更丰富的节点表示,提高了环状RNA‑疾病预测的准确性。

    基于对比学习的空间转录组数据聚类方法、装置及介质

    公开(公告)号:CN117153260B

    公开(公告)日:2024-06-25

    申请号:CN202311204657.5

    申请日:2023-09-18

    Abstract: 本发明公开了一种基于对比学习的空间转录组数据聚类方法、装置、设备及存储介质,该方法包括:基于空间转录组数据获得加权的特征矩阵和邻接矩阵并构建邻接图;将邻接图分别输入孪生网络结构两个编码器以学习第一节点表示和第二节点表示;基于第一节点表示、第二节点表示构建用于计算对比损失的正样本集;基于节点的软聚类分布和辅助分布计算聚类损失;通过对比损失和聚类损失指导模型训练进而获得聚类结果。通过孪生网络结构进行对比学习获得用于构建正样本集的节点表示,并计算对比损失和聚类损失,并基于节点间的对比损失和聚类损失指导模型训练,如此基于对比学习获得了针对基因转录组数据的数据聚类方法,提高了空间转录组数据聚类的针对性和准确性。

    一种蛋白质功能预测模型生成方法及装置

    公开(公告)号:CN116884473B

    公开(公告)日:2024-04-26

    申请号:CN202310581243.8

    申请日:2023-05-22

    Abstract: 本发明公开了一种蛋白质功能预测模型生成方法及装置,包括获取训练蛋白质的氨基酸三维原子坐标,并根据其进行图论方法生成蛋白质二维接触图;对训练蛋白质的氨基酸三维原子坐标进行算法处理获取第一特征矩阵,对蛋白质二维接触图进行算法处理获取第二特征矩阵,第一特征矩阵与训练蛋白质的氨基酸三维原子坐标中序列作用位点对应,第二特征矩阵与训练蛋白质的氨基酸三维原子坐标中结构作用折叠结构对应;根据第一特征矩阵和第二特征矩阵分别对应的数据标签训练预先构建的蛋白质功能分类器,得到蛋白质功能预测模型。通过将训练蛋白质的氨基酸结构和序列作为信息源提取特征,提高了预测模型对蛋白质功能的预测精度。

    基于对比学习的空间转录组数据聚类方法、装置及介质

    公开(公告)号:CN117153260A

    公开(公告)日:2023-12-01

    申请号:CN202311204657.5

    申请日:2023-09-18

    Abstract: 本发明公开了一种基于对比学习的空间转录组数据聚类方法、装置、设备及存储介质,该方法包括:基于空间转录组数据获得加权的特征矩阵和邻接矩阵并构建邻接图;将邻接图分别输入孪生网络结构两个编码器以学习第一节点表示和第二节点表示;基于第一节点表示、第二节点表示构建用于计算对比损失的正样本集;基于节点的软聚类分布和辅助分布计算聚类损失;通过对比损失和聚类损失指导模型训练进而获得聚类结果。通过孪生网络结构进行对比学习获得用于构建正样本集的节点表示,并计算对比损失和聚类损失,并基于节点间的对比损失和聚类损失指导模型训练,如此基于对比学习获得了针对基因转录组数据的数据聚类方法,提高了空间转录组数据聚类的针对性和准确性。

    基于图表示学习的环状RNA-疾病关联预测方法

    公开(公告)号:CN117393143A

    公开(公告)日:2024-01-12

    申请号:CN202311316888.5

    申请日:2023-10-11

    Abstract: 本发明公开了一种基于图表示学习的环状RNA‑疾病关联预测方法、移动设备及存储介质,该方法包括:基于环状RNA及相关信息构建环状RNA的异构网络,所述异构网络包括环状RNA节点和疾病节点;将异构网络中各个节点的特征随机初始化后输入图表示学习模型,通过所述图表示学习模型按预设流程学习各个节点的表示向量;基于环状RNA节点的表示向量和疾病节点的表示向量的内积确定为对应环状RNA与疾病的关联预测得分。如此,通过图表示学习模型学习异构网络中各个节点的表示向量,再基于环状RNA节点和疾病节点的表示向量的内积确定关联预测得分,提高了异构网络构建的灵活性,使得图表示学习模型能获得更丰富的节点表示,提高了环状RNA‑疾病预测的准确性。

Patent Agency Ranking