-
公开(公告)号:CN106767510A
公开(公告)日:2017-05-31
申请号:CN201611227243.4
申请日:2016-12-27
Applicant: 哈尔滨工业大学
IPC: G01B11/24
CPC classification number: G01B11/24
Abstract: 一种大口径自由曲面样品表面轮廓的测量装置与方法,涉及大口径自由曲面样品表面轮廓的测量技术,为了解决现有的测量大口径自由曲面的技术不易测量自由度较多、尺寸较大的样品,或测量速度慢、测量范围小且易损伤样品的问题。激光器发出的激光经依次经过准直镜、光阑、PBS、一号高速数字扫描振镜、二号高速数字扫描振镜和扫描透镜,扫描透镜将激光聚焦至待测样品,待测样品表面激发出的荧光依次经扫描透镜、二号高速数字扫描振镜、一号高速数字扫描振镜、PBS、滤光片、收集透镜和多模光纤,最终入射至PMT。本发明适用于测量大口径自由曲面,尤其适用于测量不对称、不规则、自由度较多的大口径自由曲面的表面轮廓。
-
公开(公告)号:CN116110636A
公开(公告)日:2023-05-12
申请号:CN202211475542.5
申请日:2022-11-23
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种全柔性、可拉伸的液态金属基生物电极及其制备方法和应用,属于功能复合材料及其制备技术领域。本发明解决了现有液态金属表面张力过大、成型困难、易泄露的技术问题。本发明首先制备了可热烧结的液态金属纳米粒子/热膨胀微球油墨,利用掩模版印刷法印刷油墨制备导电通路,并利用热膨胀微球受热膨胀的力破坏液态金属纳米粒子的氧化层从而激活液态金属形成导电通路,最后利用导电水凝胶封装检测位点得到生物电极。获得的生物电极能与皮肤良好的共形接触,实现长期、稳定的采集到皮肤表面产生的各种生物电信号的目的。此外,本发明提供的制备方法还具有操作简单、易于工业化等优点。
-
公开(公告)号:CN112374562B
公开(公告)日:2022-05-20
申请号:CN202011194069.4
申请日:2020-10-30
Applicant: 哈尔滨工业大学
IPC: B01D69/12 , C02F1/14 , C02F101/30
Abstract: 一种用于拦截水体污染中易挥发有机物的聚吡咯光热薄膜的制备方法及应用。本发明属于水资源净化材料领域。本发明的目的是为了解决现有光热材料不能将水中以合成有机物形式存在的易挥发有机物分离出来,也不能将天然水中的微生物代谢所产生的易挥发生物有机物分离出来的技术问题。本发明的方法:一、在带表面氧化层的硅片表面旋涂光刻胶;二、光刻制备微米级网格阵列结构;三、置于脱二氧化硅溶液中浸泡洗脱;四、置于KOH溶液中处理;五、电沉积聚吡咯,脱除模板后,得到表面带有微米硅锥结构的聚吡咯薄膜。或将无氧化层的硅片直接用KOH溶液刻蚀,然后电沉积聚吡咯得到。本发明的光热材料展现了较高的光热转换率,水质净化效果好,制备工艺简单。
-
公开(公告)号:CN110849513A
公开(公告)日:2020-02-28
申请号:CN201911141427.2
申请日:2019-11-20
Applicant: 哈尔滨工业大学
Abstract: 一种可大规模生产的柔性生物质基压力传感器的制备工艺,属于可穿戴传感领域。本发明要解决现有柔性器件生产过程中存在昂贵的生产成本、无法大规模生产、产生电子垃圾的缺点。本发明方法:一、将生物质加工成一定的形状后在惰性气氛下高温碳化;二、剪切成设计形状;三、然后置于PDMS/正己烷溶液中浸泡,取出后固化,得到柔性生物质基压力传感器。本发明方法成本低,可大规模生产,避免电子垃圾的产生和环境的污染,且得到的产品具有高灵敏度,高稳定性,本发明方法获得的压力传感器能够实现监测人体脉搏跳动,关节运动及喉部发音等。
-
公开(公告)号:CN106908017B
公开(公告)日:2019-03-29
申请号:CN201710104479.7
申请日:2017-02-24
Applicant: 哈尔滨工业大学
IPC: G01B11/30
Abstract: 基于金属银增强荧光的自由曲面测量装置及其测量方法,属于光学精密测量技术领域,本发明为解决由于样品表面的荧光中介层的不均匀,导致面形高度误差大的问题。本发明所述基于金属银增强荧光的自由曲面测量装置的测量方法,在待测样品表面镀一层金属荧光薄膜;激光器发出激光光束经准直镜和光阑形成平行光,经偏振分光棱镜、扫描振镜和扫描透镜在待测样品上形成聚焦光斑,激发金属荧光薄膜发出荧光;经扫描透镜、扫描振镜、偏振分光棱镜、滤光片、收集透镜和针孔被光电探测器收集;通过轴向响应曲线顶点位置确定待测样品表面位置;三维微位载物台带动待测样品在三维方向上移动,形成三维扫描成像。本发明用于测量大口径自由曲面物体表面形貌。
-
公开(公告)号:CN115975221B
公开(公告)日:2024-10-25
申请号:CN202211619852.X
申请日:2022-12-15
Applicant: 哈尔滨工业大学
IPC: C08J3/075 , C08J3/28 , C08L5/08 , C08L89/00 , C08L29/14 , A61B5/25 , A61B5/296 , A61K9/06 , A61K47/36 , A61K47/32 , A61K47/42 , A61K47/04 , A61P17/02
Abstract: 本发明公开了及一种非溶胀、高组织粘附的水凝胶及其制备方法和在多模态电极中的应用,属于功能复合材料及其制备技术领域。本发明解决了现有非溶胀水凝胶粘附力弱,粘附力无法修复,不能按需脱附,以及电极对湿组织无粘附力的问题。本发明以壳聚糖接枝N‑乙酰基‑L‑半胱氨酸、丙烯酸、明胶、聚乙烯醇缩丁醛、去离子水、α‑酮戊二酸、甲基丙烯酸明胶和二甲基亚砜为原料,得到非溶胀,高粘附的水凝胶。本发明还公开了一种可植入的多模态生物电极,利用非溶胀动态粘附水凝胶通过静电作用将聚吡咯和多壁碳纳米管稳定的集成在其表面,使多模态电极长期稳定的粘附在老鼠体内,并准确的采集老鼠的肌电信号和组织形变,使用结束后可以实现按需脱附。
-
公开(公告)号:CN115998299B
公开(公告)日:2024-05-10
申请号:CN202211624242.9
申请日:2022-12-15
Applicant: 哈尔滨工业大学
IPC: A61B5/266 , D04H1/728 , D01D5/00 , D01F8/10 , D01F8/16 , D06M15/37 , D06M10/00 , A61B5/268 , A61B5/294 , D06M101/18 , D06M101/30
Abstract: 本发明公开了一种透气、高基底粘附柔性可拉伸神经电极及其制备方法和应用,属于神经电极复合材料及其制备技术领域。本发明解决了现有神经电极透气性差、导电层与柔性基底间粘附性差,以及为了适应组织运动而避免因电极形变导致的稳定性差的问题。本发明采用热塑性弹性体苯乙烯‑乙烯‑丁烯‑苯乙烯嵌段共聚物(SEBS)、聚二甲基硅氧烷(PDMS)和导电聚合物聚吡咯(PPy)材料,利用静电纺丝工艺、预拉伸技术、等离子体预处理、喷涂和气相沉积法得到形貌规整且具有三维褶皱的SEBS/PDMS/PPy神经电极,该神经电极具有可透气、拉伸导电稳定性、高基底粘附的性能,实现了对生物体电生理信号(如心电、肌电等)的稳定准确监测。
-
公开(公告)号:CN113717854B
公开(公告)日:2023-05-02
申请号:CN202111021380.3
申请日:2021-09-01
Applicant: 东北农业大学 , 哈尔滨工业大学 , 长春长光辰英生物科学仪器有限公司
IPC: C12N1/12 , C02F3/32 , C02F103/20 , C12R1/89
Abstract: 一株产油小球藻ZM‑5及其应用,它涉及产油小球藻。它要解决现有藻种对养猪废水的净化效果不佳的问题。它已在中国典型培养物保藏中心保藏,保藏编号为:CCTCC No:M20211015,保藏时间2021年8月10日,保藏地址为武汉市武汉大学,它为小球藻(Chlorella sorokiniana)ZM‑5。本发明采用PRECI SCS单细胞分选仪对特定微藻进行单细胞分选,方法简单,实现单个藻类细胞的分离,不破坏细胞结构,保证后续单细胞的扩大培养及研究。小球藻ZM‑5对养猪废水有着高效的COD、TN、TP净化能力,适合大规模推广使用,对废水的污染治理及资源化具有重大意义。小球藻ZM‑5应用于净化养猪废水。
-
公开(公告)号:CN115998299A
公开(公告)日:2023-04-25
申请号:CN202211624242.9
申请日:2022-12-15
Applicant: 哈尔滨工业大学
IPC: A61B5/266 , D04H1/728 , D01D5/00 , D01F8/10 , D01F8/16 , D06M15/37 , D06M10/00 , A61B5/268 , A61B5/294 , D06M101/18 , D06M101/30
Abstract: 本发明公开了一种透气、高基底粘附柔性可拉伸神经电极及其制备方法和应用,属于神经电极复合材料及其制备技术领域。本发明解决了现有神经电极透气性差、导电层与柔性基底间粘附性差,以及为了适应组织运动而避免因电极形变导致的稳定性差的问题。本发明采用热塑性弹性体苯乙烯‑乙烯‑丁烯‑苯乙烯嵌段共聚物(SEBS)、聚二甲基硅氧烷(PDMS)和导电聚合物聚吡咯(PPy)材料,利用静电纺丝工艺、预拉伸技术、等离子体预处理、喷涂和气相沉积法得到形貌规整且具有三维褶皱的SEBS/PDMS/PPy神经电极,该神经电极具有可透气、拉伸导电稳定性、高基底粘附的性能,实现了对生物体电生理信号(如心电、肌电等)的稳定准确监测。
-
公开(公告)号:CN115975221A
公开(公告)日:2023-04-18
申请号:CN202211619852.X
申请日:2022-12-15
Applicant: 哈尔滨工业大学
IPC: C08J3/075 , C08J3/28 , C08L5/08 , C08L89/00 , C08L29/14 , A61B5/25 , A61B5/296 , A61K9/06 , A61K47/36 , A61K47/32 , A61K47/42 , A61K47/04 , A61P17/02
Abstract: 本发明公开了及一种非溶胀、高组织粘附的水凝胶及其制备方法和在多模态电极中的应用,属于功能复合材料及其制备技术领域。本发明解决了现有非溶胀水凝胶粘附力弱,粘附力无法修复,不能按需脱附,以及电极对湿组织无粘附力的问题。本发明以壳聚糖接枝N‑乙酰基‑L‑半胱氨酸、丙烯酸、明胶、聚乙烯醇缩丁醛、去离子水、α‑酮戊二酸、甲基丙烯酸明胶和二甲基亚砜为原料,得到非溶胀,高粘附的水凝胶。本发明还公开了一种可植入的多模态生物电极,利用非溶胀动态粘附水凝胶通过静电作用将聚吡咯和多壁碳纳米管稳定的集成在其表面,使多模态电极长期稳定的粘附在老鼠体内,并准确的采集老鼠的肌电信号和组织形变,使用结束后可以实现按需脱附。
-
-
-
-
-
-
-
-
-