-
公开(公告)号:CN119478447B
公开(公告)日:2025-04-29
申请号:CN202411508586.2
申请日:2024-10-28
Applicant: 哈尔滨工业大学
IPC: G06V10/46 , G06V10/44 , G06V10/52 , G06V10/62 , G06V10/80 , G06V10/26 , G06N3/0455 , G06N3/0464
Abstract: 本发明公开了一种局部运动感知的红外小目标特征增强方法,所述方法包括如下步骤:步骤一:加载红外序列图像,选择连续T帧图像作为网络输入,利用主干网络提取图像特征;步骤二:利用粗略运动估计模块CME提取粗略的目标帧间运动信息,生成前向光流和后向光流;步骤三:利用能量增强模块EnE结合光流和可变形卷积对齐多帧序列,并采用卷积核大小为1×1的3D卷积增强目标特征;步骤四:利用引导光流学习的特征增强任务头输出增强后的红外图像,通过目标分割任务头将多尺度特征融合,输出目标分割结果,进而引导特征增强网络的学习。该方法可以有效地适应目标暗弱以及背景运动的场景,输出高质量的红外多帧运动小目标的增强图像。
-
公开(公告)号:CN117237802B
公开(公告)日:2025-04-29
申请号:CN202311173885.0
申请日:2023-09-12
Applicant: 哈尔滨工业大学
IPC: G06V20/10 , G06V10/776 , G06V10/80 , G06F18/25 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/048 , G06N3/045 , G06N3/08
Abstract: 一种基于多分支信息互补的多源遥感图像目标检测识别方法,所述方法为:基于跨域信息引导的信号级融合检测识别。信号级融合检测识别通过跨域信息引导融合模块实现多源数据互补信息的充分融合,再经由目标检测识别模块实现目标位置、类别信息输出。基于交并比的多分支融合识别结果关联。利用单源目标检测识别模块处理单源图像,输出单源检测识别结果,结合信号级融合识别结果,计算多分支目标预测框交并比并进行关联。基于阶梯置信度阈值筛选的多分支识别结果决策级融合。对于关联后的多分支预测结果,基于预测框关联数目、目标置信度和类别,筛选目标并确定最终目标类型。本方法可以实现针对复杂场景、环境下的目标高概率、低虚警率的检测识别。
-
公开(公告)号:CN116935223B
公开(公告)日:2025-03-11
申请号:CN202310918475.8
申请日:2023-07-25
Applicant: 哈尔滨工业大学
IPC: G06V20/10 , G06V10/25 , G06V10/24 , G06V10/764 , G06V10/766 , G06V10/80 , G06V10/82 , G06N3/045 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种基于任务解耦和自适应点集策略的旋转目标检测方法,所述方法包括如下步骤:步骤1:设计基于自适应点集策略的anchor‑free旋转目标检测网络,挖掘任意方向目标的深层几何信息,提取用于旋转目标框定位的角度信息;步骤2:设计检测特征解耦网络,在特征空间和网络参数两个方面将回归与分类拆分为两个子网络,抑制回归任务和分类任务之间的特征敏感性不一致问题,实现复杂场景下遥感目标的检测与定位。该方法通过增强模型对深层空间几何信息和基本纹理特征的提取能力,从而实现在各种复杂场景下的遥感目标检测,为航空管制、海上救援和港口管理等军民应用提供有力支持。
-
公开(公告)号:CN116994137B
公开(公告)日:2025-01-28
申请号:CN202310979011.8
申请日:2023-08-04
Applicant: 哈尔滨工业大学
IPC: G06V20/10 , G06V10/82 , G06V10/42 , G06V10/44 , G06V10/80 , G06V10/764 , G06N3/0464 , G06N3/08
Abstract: 一种基于多尺度形变建模和区域精细提取的目标检测方法,属于目标检测与识别技术领域。方法如下:设计多尺度特征动态融合模块,获得多尺度形变目标的候选区域提取结果;将候选区域提取结果分类,获得用最小边界矩形框标记的所有目标区域;提出定制化的结合二进制交叉熵、偏置损失和结构相似度的显著区域精细提取损失函数,实现复杂场景干扰下舰船目标的准确检测。本发明实现目标多尺度形变特征的增强学习,提高检测网络对目标与复杂背景的分辨能力,可实现在云层、光照阴影、港口设施等复杂场景下的舰船目标准确检测,为航空管制、海上救援和港口管理等军民应用提供有力支持。
-
公开(公告)号:CN118822841A
公开(公告)日:2024-10-22
申请号:CN202410829403.0
申请日:2024-06-25
Applicant: 哈尔滨工业大学
IPC: G06T3/4038 , G06T5/50 , G06V10/764 , G06T5/70 , G06N3/0475 , G06N3/098 , G06N3/0464 , G06N3/084 , G06N3/048 , G06N5/04
Abstract: 本发明公开了一种基于扩散模型的条件引导图像翻译方法,所述方法提出一种结合扩散模型与条件生成对抗网络的两阶段图像翻译模型,阶段一预训练ResAttNet1提取深度特征,利用深度特征图中包含的丰富语义信息,作为条件生成对抗网络的条件信息,引导条件生成对抗网络完成图像翻译。阶段二利用训练好的ResAttNet1和参数随机初始化的ResAttNet2分别提取全局特征信息和样本级深度特征,采用条件生成对抗网络与扩散模型联合训练的策略,使用一个轻量的扩散模型细化深度特征,最终构建一个训练稳定、生成图像保真度好、采样速率高的图像翻译网络。该方法能够提高条件信息的质量和准确性,有效提升CGAN的图像翻译性能。
-
公开(公告)号:CN117557857A
公开(公告)日:2024-02-13
申请号:CN202311574622.0
申请日:2023-11-23
Applicant: 哈尔滨工业大学
IPC: G06V10/764 , G06V10/82 , G06V10/44 , G06N3/0464 , G06N3/048 , G06N3/082 , G06N3/096
Abstract: 本发明公开了一种结合渐进式引导蒸馏和结构重构的检测网络轻量化方法,所述方法把MobileNet v3Block中的SE注意力机制替换为CBAM注意力机制,从空间和通道两个方面提升特征显著性,然后将目标检测网络中的卷积模块替换为改进后的MobileNet v3Block模块;再通过基于批归一化的剪枝方剔除重要性低的冗余通道,以进一步提升模型的轻量程度。本发明将渐进式引导蒸馏从图像分类任务扩展到目标检测任务,改进基于主干特征映射的知识蒸馏方法,通过教师网络提供先验知识,使用教师网络的中间表示特征作为提示辅助训练,以助教网络作为媒介平衡学生网络的检测精度和速度。
-
公开(公告)号:CN116935223A
公开(公告)日:2023-10-24
申请号:CN202310918475.8
申请日:2023-07-25
Applicant: 哈尔滨工业大学
IPC: G06V20/10 , G06V10/25 , G06V10/24 , G06V10/764 , G06V10/766 , G06V10/80 , G06V10/82 , G06N3/045 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种基于任务解耦和自适应点集策略的旋转目标检测方法,所述方法包括如下步骤:步骤1:设计基于自适应点集策略的anchor‑free旋转目标检测网络,挖掘任意方向目标的深层几何信息,提取用于旋转目标框定位的角度信息;步骤2:设计检测特征解耦网络,在特征空间和网络参数两个方面将回归与分类拆分为两个子网络,抑制回归任务和分类任务之间的特征敏感性不一致问题,实现复杂场景下遥感目标的检测与定位。该方法通过增强模型对深层空间几何信息和基本纹理特征的提取能力,从而实现在各种复杂场景下的遥感目标检测,为航空管制、海上救援和港口管理等军民应用提供有力支持。
-
公开(公告)号:CN116434074A
公开(公告)日:2023-07-14
申请号:CN202310019335.7
申请日:2023-01-06
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种基于邻支互补显著性和多先验稀疏表征的目标识别方法,所述方法包括如下步骤:步骤1:提出邻支互补显著性提取网络,挖掘图像深层次、语义一致性信息,提取多尺度目标的候选显著区域;步骤2:通过结合目标多先验信息的稀疏表征分类器,抑制显著性提取网络可能产生的虚警,实现复杂场景下舰船目标的准确识别。该方法通过深度显著性特征提取网络挖掘图像中舰船目标的显著区域特征,与图像数据的多先验稀疏表征分类方法结合,不但可以充分发挥深度网络多层级提取图像特征的优势,而且对物体部分遮挡复杂海杂波、港口设施、光照阴影等复杂环境干扰具有鲁棒性的特点,可为港口救援、海上交通维护等应用提供支持。
-
公开(公告)号:CN115641507A
公开(公告)日:2023-01-24
申请号:CN202211387533.0
申请日:2022-11-07
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种基于自适应多层级融合的遥感图像小尺度面目标检测方法,所述方法包括如下步骤:步骤1:使用主干特征提取网络提取输入图像的浅层和深层的多层级特征图,下采样层级分别为4、8、16、32倍;步骤2:使用自适应融合权重的多层次特征提取架构实现对步骤1中不同下采样级数特征的融合;步骤3:选用融合后的下采样级数为4倍和8倍的高分辨率特征层进行目标位置和类别信息的预测,得到最终的检测结果。该方法能够实现对不同层级中语义和结构信息的有效融合,提高网络对小尺度目标的特征提取和检测定位能力,有效减少场景中虚警源对目标检测的干扰,从而实现遥感图像小尺度目标的高检测率、低虚警率的检测。
-
公开(公告)号:CN113204909B
公开(公告)日:2022-07-19
申请号:CN202110624730.9
申请日:2021-06-04
Applicant: 哈尔滨工业大学
IPC: G06F30/23
Abstract: 本发明公开了一种基于地基观测光度信号的卫星几何特征与姿态估计方法,包括:S1,建立地基观测条件下的卫星光度信号观测模型;S2,建立卫星的“几何‑姿态‑光度”数据库:S3,辨识卫星的几何模型和尺度;S4,建立被观测卫星的姿态运动学方程;S5,设置无损卡尔曼滤波器的初始参数;S6,将姿态运动学方程和卫星光度信号观测模型分别作为无损卡尔曼滤波算法的时间更新模型和观测更新模型,采用无损卡尔曼滤波算法对下一观测时刻卫星姿态参数进行更新估计;S7,将步骤S6估计的卫星姿态参数作为新的观测时刻卫星状态参数重复步骤S6,当卫星姿态参数估计值误差小于设定阈值或卫星超出观测范围时停止迭代,从而获得高精度的卫星姿态参数估计值。
-
-
-
-
-
-
-
-
-