-
公开(公告)号:CN117228662A
公开(公告)日:2023-12-15
申请号:CN202311206342.4
申请日:2023-09-18
Applicant: 哈尔滨工业大学 , 信和新材料股份有限公司
IPC: C01B32/184 , C01B32/194 , C01B32/914 , B82Y30/00
Abstract: 本发明涉及石墨烯碳材料技术领域,尤其涉及一种铬掺杂石墨烯的制备方法。本发明提供了一种铬掺杂石墨烯的制备方法,包括以下步骤:将铬源、碳源和镁混合,得到混合物;在保护气氛中,将所述混合物进行燃烧合成反应,得到所述铬掺杂石墨烯。本发明以铬源为原料,通过燃烧合成法实现了铬掺杂石墨烯的低成本大批量制备,具有操作简单、铬掺杂量可调控、铬元素分布均匀,易于批量化、产品质量高的特点。
-
公开(公告)号:CN113293424A
公开(公告)日:2021-08-24
申请号:CN202110550494.0
申请日:2021-05-20
Applicant: 哈尔滨工业大学
IPC: C25D15/00 , C25D3/38 , C22C1/05 , C22C9/00 , C01B32/184
Abstract: 本发明属于冶金技术领域,具体涉及一种石墨烯/铜复合粉体及其制备方法、石墨烯/铜复合材料及其制备方法和应用。本发明利用石墨烯在溶液中带负电、铜离子带正电,二者能够相互吸引的特性,得到铜/石墨烯均匀分散的混合溶液,在电沉积过程中,石墨烯在带正电的铜离子带动下粘附在阴极极板上,得到部分还原,使石墨烯中的含氧官能团和缺陷得到修复,提升了制备得到的石墨烯/铜复合粉体导电性。利用本发明制备的石墨烯/铜复合粉体为原料,通过还原热处理和一定成型的方式制备成复合材料,所得复合材料具有优异的力学、电学、导热和高温稳定性能。
-
公开(公告)号:CN111410189A
公开(公告)日:2020-07-14
申请号:CN201910008595.8
申请日:2019-01-04
Applicant: 泉州信和石墨烯研究院有限公司 , 哈尔滨工业大学
IPC: C01B32/184 , C01F5/02 , C01F11/06 , C01F7/16
Abstract: 一种石墨烯和无机颗粒复合粉体及其制备方法;属于复合粉体领域。本发明是要解决现有石墨烯与无机颗粒复合粉体制备工艺路线较长、成本高、环保压力大的问题。通过将镁铝合金粉和/或镁粉、碳酸盐粉体和无机颗粒粉体进行均匀混合,将该混合粉体进行自蔓延高温燃烧合成反应,得到石墨烯与无机颗粒的复合粉体。本发明的石墨烯和无机颗粒复合粉体的制备方法同时具备操作方法简单、成本低、环保的优点。本发明适用于石墨烯和无机颗粒复合粉体的工业化生产。该复合物可广泛用做涂料填料、油漆填料、水泥功能添加剂、树脂基复合材料增强体、陶瓷基复合材料增强体、金属基复合材料增强体、模具材料、导电浆料等领域、催化剂载体、储能材料等领域。
-
公开(公告)号:CN104726733A
公开(公告)日:2015-06-24
申请号:CN201510128523.9
申请日:2015-03-24
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种钛酸锶钡增强铜基/铝基复合材料,所述复合材料以体积百分比计,由30~95%金属基体和5~70%增强体制成,所述金属基体为铜粉、铜合金粉、铝粉或铝合金粉;增强体为Ba1-xSrxTiO3或包覆铜、银或氧化锆的Ba1-xSrxTiO3,其中0≤x≤1。该复合材料除具有可镀覆性、可焊性、耐蚀性、良好的电磁波干扰(EMI)/射频干扰(RFI)屏蔽能力、高强度、高硬度,优良的加工性、成型性和低廉的价格外,同时具备高热导性、高电导性、低热膨胀系数的性能,在-100~200℃热膨胀系数为1×10-6~9×10-6,热导率为70~380W/m·K。
-
公开(公告)号:CN102965533B
公开(公告)日:2015-03-11
申请号:CN201210344114.9
申请日:2012-09-17
Applicant: 哈尔滨工业大学
IPC: C22C1/05 , C22C32/00 , C22C47/12 , C22C49/14 , C22C101/02 , C22C101/06
Abstract: 纳米氧化锆/陶瓷增强体预制件的制备方法及利用该预制件制备轻金属基复合材料的方法,它涉及预制件的制备方法以及利用该预制件制备轻金属基复合材料的方法。本发明是要解决现有方法制备的预制件强度低以及轻金属基复合材料的拉伸强度低的问题。制备方法:一、制备纳米氧化锆前驱体;二、将陶瓷增强体与纳米氧化锆前驱体溶液混合,进行预制件成型并烧结处理,即得到纳米氧化锆/陶瓷增强体预制件,将本发明制备的预制件与轻金属复合,制备轻金属基复合材料。本发明制备的预制件的压缩强度提高了50~100%,轻金属基复合材料的拉伸强度提高5~20%。本发明应用在航天、汽车以及民用工程领域。
-
公开(公告)号:CN102838110A
公开(公告)日:2012-12-26
申请号:CN201210344115.3
申请日:2012-09-17
Applicant: 哈尔滨工业大学
IPC: C01B31/04
Abstract: 一种石墨烯粉体的制备方法,它涉及碳结构材料的制备方法。本发明是要解决现有石墨烯的制备方法无法同时具备原料易保存运输、操作方法简单、成本低、可连续生产、环保的优点的问题。制备方法:通过研磨混合,制备镁粉和碳酸盐粉末的混合粉体,将该混合粉体进行燃烧合成反应,得到石墨烯粉体。本发明的石墨烯粉体的制备方法同时具备原料易保存和运输、操作方法简单、成本低、可连续生产、环保的优点,制备出的石墨烯粉体缺陷较少且厚度较小。本发明适用于石墨烯的工业化生产。
-
公开(公告)号:CN100368293C
公开(公告)日:2008-02-13
申请号:CN200610009821.7
申请日:2006-03-17
Applicant: 哈尔滨工业大学
IPC: C01B33/20
Abstract: β—锂霞石的制备方法,它涉及一种霞石的制备方法。它解决了现有制备方法制备的β—锂霞石化学均匀性差,副产物多,能耗大,成本高,操作复杂,耗时长的缺陷。其制备方法:(一)按1mol锂∶1mol铝∶1mol硅比例称取碳酸锂、纳米氧化硅和纳米氢氧化铝,或者纳米氧化铝;(二)将碳酸锂完全溶于有机酸溶液;(三)将纳米氧化硅和纳米氢氧化铝,或者纳米氧化铝放入步骤二的溶液中;(四)干燥胶状物以除去水分;(五)胶状物干燥后灼烧,即得到β—锂霞石。本发明原料成本低于溶胶-凝胶法成本的1/6;节约生产时间60%以上;制备工艺简单;纯度高可达90%以上;不产生二氧化氮、氨气等有毒气体;节约能源70%以上。
-
公开(公告)号:CN100347329C
公开(公告)日:2007-11-07
申请号:CN200510127326.1
申请日:2005-12-09
Applicant: 哈尔滨工业大学
Abstract: ZnAl2O4包覆硼酸铝晶须增强铝基或镁基复合材料及其制备方法,它涉及一种硼酸铝晶须增强铝基或镁基复合材料及其制备方法。它解决了现有复合材料中硼酸铝晶须与基体浸润性差,硼酸铝晶须与基体结合强度不高的问题,而且能够有效阻碍界面反应的发生。ZnAl2O4包覆硼酸铝晶须增强铝基或镁基复合材料由ZnO、硼酸铝晶须和铝基或镁基三种原料制成。其制备方法:(一)将硼酸铝晶须加入ZnO溶胶中;(二)制ZnO涂覆的硼酸铝晶须;(三)制备ZnAl2O4包覆的硼酸铝晶须预制块;(四)挤压铸造,即得到ZnAl2O4包覆硼酸铝晶须增强铝基或镁基复合材料。ZnO与硼酸铝反应生成的ZnAl2O4包覆到硼酸铝晶须表面,提高了硼酸铝晶须与基体的浸润性和界面结合强度,使复合材料的力学性能显著提高。
-
公开(公告)号:CN1293214C
公开(公告)日:2007-01-03
申请号:CN200510009684.2
申请日:2005-01-31
Applicant: 哈尔滨工业大学
Abstract: 三氧化二铋包覆陶瓷相增强铝基复合材料,它涉及一种新型的复合材料。本发明的铝基复合材料由三氧化二铋、陶瓷相增强体和铝基体三种成分组成,其中陶瓷相增强体的体积分数占总体积分数的5~50%,三氧化二铋的加入量占陶瓷相增强体质量的2~20%。包覆物三氧化二铋基本都在增强体和基体的界面处,并且三氧化二铋和基体铝发生铝热反应,生成低熔点金属铋都分布在增强体和基体的界面处。在复合材料热变形时,温度高于金属铋的熔点270℃,界面处的低熔点金属铋熔化变成液体,在增强体和基体之间起到润滑作用,降低了变形温度和加工成本,减少了陶瓷相增强体的损伤,变形后的复合材料仍有优良的力学性能。
-
公开(公告)号:CN1769511A
公开(公告)日:2006-05-10
申请号:CN200510010130.4
申请日:2005-06-29
Applicant: 哈尔滨工业大学
Abstract: 含SnO2涂覆陶瓷相增强铝基或镁基复合材料,它属于金属基复合材料领域。针对现有复合材料存在增强相与基体的润湿性差、增强相和基体以及基体中的合金元素会发生严重的界面反应和热塑性变形能力较差的不足,本发明的含SnO2涂覆陶瓷相增强铝基或镁基复合材料由SnO2涂层、陶瓷增强相和铝或镁基体三种成分组成,其中陶瓷增强相的体积占总体积的15~50%,SnO2的加入量占陶瓷增强相质量的2~ 20%。该复合材料可以通过物理或化学方法实现陶瓷增强相表面的SnO2涂覆。SnO2涂覆后可以提高增强相与基体的润湿性,抑制增强相与基体的界面反应,还可以降低复合材料的热塑性变形温度,减少复合材料热加工的成本,热变形后复合材料仍有很好的力学性能。
-
-
-
-
-
-
-
-
-