基于不确定性和多样性获取函数的主动学习方法

    公开(公告)号:CN119723202A

    公开(公告)日:2025-03-28

    申请号:CN202411904100.7

    申请日:2024-12-23

    Abstract: 一种基于不确定性和多样性获取函数的主动学习方法,属于计算机视觉中物体检测器的主动学习领域。本发明针对现有主动学习过程利用的初始化后的物体检测器不能深层次挖掘有价值图像的特征的问题。包括:采用基于图像级标签训练好的弱监督物体检测器和部分实例级标签初始化的全监督物体检测器对训练集中已标注真值或伪真值的图像进行检测,根据检测结果计算实例级困难分数、类级困难分数及类相同权重;再对未标注实例级标签图像进行检测,基于类相关权重和熵计算图像级困难分数并确定候选图像;根据对候选图像的检测结果计算每两幅候选图像的相似度,确定候选图像的聚类中心,聚类后确定有价值图像。本发明能够进一步地精炼全监督的物体检测器。

    基于一维组卷积神经网络的高光谱遥感数据深度光谱特征提取方法

    公开(公告)号:CN111062403B

    公开(公告)日:2022-11-22

    申请号:CN201911369737.X

    申请日:2019-12-26

    Abstract: 基于一维组卷积神经网络的高光谱遥感数据深度光谱特征提取方法,属于遥感数据特征提取技术领域。为了解决现有的基于深度学习方法需要大量标记的训练样本学习模型的参数,存在针对高光谱遥感数据标记训练样本稀少的情况光谱特征提取效果差的问题。本发明所述方法利用D个一维滤波器对归一化数据进行卷积操作,在特征通道方向分成g组;每组利用多个一维滤波器进行一维卷积操作,将每组卷积结果在特征通道方向上堆栈在一起;进行全局和局部相关性并进行加权,洗牌,然后进行一维卷积操作,提取光谱特征;进而确定高光谱遥感数据深度光谱特征提取模型,训练高光谱遥感数据深度光谱特征提取模型。本发明用于高光谱遥感数据深度光谱特征的提取。

    一种基于身体关键点检测的真实场景遮挡行人检测网络及其检测方法

    公开(公告)号:CN109766868B

    公开(公告)日:2020-12-11

    申请号:CN201910063662.6

    申请日:2019-01-23

    Abstract: 本发明提出了一种基于身体关键点检测的真实场景遮挡行人检测网络及其检测方法,属于计算机视觉的行人检测技术领域。所述检测网络包括关键点检测网络、身体区域分割和图像合成模块以及行人分类网络。所述检测方法为:利用行人检测数据库训练生成基准行人检测器,通过基准行人检测器获取候选区域图像。通过关键点检测网络检测候选区域图像中人体身体的关键点信息,将关键点信息作为身体关键点真值,进而训练关键点检测网络。利用身体区域分割和图像合成模块获得合成图像;将合成图像输入至行人分类网络中指导训练行人分类网络。行人分类网络根据输入的合成图像判别输入图像是行人图像还是背景图像,完成真实场景中遮挡行人的检测。

    一种基于身体关键点检测的真实场景遮挡行人检测网络及其检测方法

    公开(公告)号:CN109766868A

    公开(公告)日:2019-05-17

    申请号:CN201910063662.6

    申请日:2019-01-23

    Abstract: 本发明提出了一种基于身体关键点检测的真实场景遮挡行人检测网络及其检测方法,属于计算机视觉的行人检测技术领域。所述检测网络包括关键点检测网络、身体区域分割和图像合成模块以及行人分类网络。所述检测方法为:利用行人检测数据库训练生成基准行人检测器,通过基准行人检测器获取候选区域图像。通过关键点检测网络检测候选区域图像中人体身体的关键点信息,将关键点信息作为身体关键点真值,进而训练关键点检测网络。利用身体区域分割和图像合成模块获得合成图像;将合成图像输入至行人分类网络中指导训练行人分类网络。行人分类网络根据输入的合成图像判别输入图像是行人图像还是背景图像,完成真实场景中遮挡行人的检测。

Patent Agency Ranking