-
公开(公告)号:CN115673868A
公开(公告)日:2023-02-03
申请号:CN202211105502.1
申请日:2022-09-09
Applicant: 哈尔滨工业大学
IPC: B23Q17/00
Abstract: 一种五轴联动超精密加工检测试件及其检测方法,属于超精密加工技术领域。本发明通过结构设计使机床的五个轴系在加工过程中必须参与联动,该试件不仅结构形状简单,加工效率高,同时检测方便,可以对五轴联动超精密加工机床的加工精度进行评价。所述试件由从上至下一体连接的偏心球、延长锥体、转接板和安装柱四部分构成;所述安装柱通过快换夹具安装在五轴超精密机床的主轴上,所述偏心球相对于安装柱偏心设置,偏心球与延长锥体同轴设置。本发明能够对五轴联动超精密加工机床的五轴联动加工精度进行快速检测,尺寸更小,加工速度快,效率更高。
-
公开(公告)号:CN111546134B
公开(公告)日:2021-08-03
申请号:CN202010302054.9
申请日:2020-04-16
Applicant: 哈尔滨工业大学
IPC: B23Q17/24
Abstract: 一种基于超精密铣削工艺的光栅尺误差补偿方法,属于光栅尺测量技术领域。建立铣削平面误差条纹模型,加工多个不同角度的平面,并进行表面形貌检测,将检测结果与模型对比,判断正弦性,确定机床光栅尺误差的同步位置,确定补偿相位值,确定补偿量;确定补偿计算式,建立误差补偿表,进行变换补偿。本发明可以有效地识别因光栅尺误差而产生的表面条纹,识别光栅尺误差,大幅度提高了切削表面质量,有效地降低了工件表面粗糙度;补偿后机床加工零件的表面粗糙度值是未补偿表面的50%~60%,表面质量提高1~2倍。
-
公开(公告)号:CN110434754A
公开(公告)日:2019-11-12
申请号:CN201910736918.5
申请日:2019-08-10
Applicant: 哈尔滨工业大学
IPC: B24B37/005 , B24B37/025 , B24B49/12 , B24B57/04 , B24B53/017
Abstract: 一种高精度单晶金刚石圆锥压头的机械研磨工艺,属于高精度纳米压痕压头制造技术领域。单晶金刚石晶体毛坯切开将切割面磨平制为单晶金刚石晶体;将单晶金刚石晶体焊接在压头柄端部,得到单晶金刚石压头;将单晶金刚石压头尖部磨圆制为单晶金刚石圆锥压头;圆锥面的粗加工;铸铁研磨盘的精密修整与金刚石研磨膏涂敷;金刚石刀具研磨机机床性能状态的稳定;圆锥面的第一次精加工;球头表面的第一次精加工;调整夹具回转轴线位置与摆轴回转中心重合;圆锥面的第二次精加工;球头表面的第二次精加工;利用原子力显微镜进行检测,判断是否加工合格。操作简单,成本低,能够得到高精度的单晶金刚石圆锥压头。
-
公开(公告)号:CN107457616A
公开(公告)日:2017-12-12
申请号:CN201710801641.0
申请日:2017-09-07
Applicant: 哈尔滨工业大学
Abstract: 一种基于纳米镍粉的金刚石晶体表面机械化学抛光方法,属于金刚石刀具制造技术领域。本发明从金刚石晶体与过渡族金属元素在摩擦高温催化作用下发生化学反应入手,结合前期积累的金刚石晶体机械刃磨抛光加工经验,采用涂覆纳米镍粉的抛光垫加工金刚石晶体平面。通过金刚石晶体平面的抛光工艺实验,详细分析了抛光垫往复运动频率和往复运动行程、机床主轴转速、抛光压力、金刚石晶体对抛光垫挤压深度、抛光时间、重复涂粉时间间隔等工艺参数对金刚石晶体平面抛光效果的影响规律,包括表面粗糙度Ra和表面粗糙度Rz,并建立优化的金刚石晶体表面抛光工艺,实现表面粗糙度Ra 0.6nm或Rz 3.6nm,为高精度金刚石刀具的机械化学抛光加工工艺技术迈出了探究性的一步。
-
公开(公告)号:CN115673868B
公开(公告)日:2024-05-28
申请号:CN202211105502.1
申请日:2022-09-09
Applicant: 哈尔滨工业大学
IPC: B23Q17/00
Abstract: 一种五轴联动超精密加工检测试件及其检测方法,属于超精密加工技术领域。本发明通过结构设计使机床的五个轴系在加工过程中必须参与联动,该试件不仅结构形状简单,加工效率高,同时检测方便,可以对五轴联动超精密加工机床的加工精度进行评价。所述试件由从上至下一体连接的偏心球、延长锥体、转接板和安装柱四部分构成;所述安装柱通过快换夹具安装在五轴超精密机床的主轴上,所述偏心球相对于安装柱偏心设置,偏心球与延长锥体同轴设置。本发明能够对五轴联动超精密加工机床的五轴联动加工精度进行快速检测,尺寸更小,加工速度快,效率更高。
-
公开(公告)号:CN110442987B
公开(公告)日:2022-05-10
申请号:CN201910736917.0
申请日:2019-08-10
Applicant: 哈尔滨工业大学
Abstract: 一种单晶金刚石圆锥压头轴线方向及研磨角度选择方法,属于高精度纳米压痕压头制造技术领域。根据典型晶面微观抗剪切强度确定其易磨度因子,通过加权叠加计算得到一般晶面晶向的易磨度因子;基于坐标变换方法计算某一般晶面晶向的易磨度因子;对锥面一圈沿不同研磨方向的易磨度因子进行计算;对特定半锥角、以不同晶向为轴线的单晶金刚石圆锥压头,计算沿不同研磨方向的锥面的易磨度因子标准差以选择轴线方向;对特定轴线为方向、特定半锥角单晶金刚石圆锥压头,计算锥面沿不同研磨方向的易磨度因子标准差以选择压头的研磨角度。通过优选能够明显减弱单晶金刚石晶体各向异性特征对压头研磨精度的不利影响。
-
公开(公告)号:CN114101766A
公开(公告)日:2022-03-01
申请号:CN202111566927.8
申请日:2021-12-20
Applicant: 哈尔滨工业大学
Abstract: 一种超精密机床线性轴侧向回程误差的补偿方法,属于超精密加工技术领域,具体方案包括以下步骤:建立球刀铣削表面侧向回程误差e的计算式;使用方形螺旋轨迹球刀铣削加工XY平面,判断误差方向;使用光栅式轨迹球刀铣削加工XY平面,获得X轴沿Z方向的侧向回程误差值exz、Y轴沿Z方向的侧向回程误差值eyz;同理获得Z轴沿X方向的侧向回程误差值ezx、Y轴沿X方向的侧向回程误差值eyx,其中将步骤二和步骤三中的轴标X替换为Z,Z替换为X,Y不变化;利用步骤三和步骤四中得到的侧向回程误差值,通过处理加工程序进行侧向回程误差补偿。利用本发明补偿后的铣削表面质量可提高1~2倍,表面粗糙度值可降低为未补偿表面的40%~60%。
-
公开(公告)号:CN110434754B
公开(公告)日:2021-03-02
申请号:CN201910736918.5
申请日:2019-08-10
Applicant: 哈尔滨工业大学
IPC: B24B37/005 , B24B37/025 , B24B49/12 , B24B57/04 , B24B53/017
Abstract: 一种高精度单晶金刚石圆锥压头的机械研磨工艺,属于高精度纳米压痕压头制造技术领域。单晶金刚石晶体毛坯切开将切割面磨平制为单晶金刚石晶体;将单晶金刚石晶体焊接在压头柄端部,得到单晶金刚石压头;将单晶金刚石压头尖部磨圆制为单晶金刚石圆锥压头;圆锥面的粗加工;铸铁研磨盘的精密修整与金刚石研磨膏涂敷;金刚石刀具研磨机机床性能状态的稳定;圆锥面的第一次精加工;球头表面的第一次精加工;调整夹具回转轴线位置与摆轴回转中心重合;圆锥面的第二次精加工;球头表面的第二次精加工;利用原子力显微镜进行检测,判断是否加工合格。操作简单,成本低,能够得到高精度的单晶金刚石圆锥压头。
-
-
-
-
-
-
-