-
公开(公告)号:CN113897506A
公开(公告)日:2022-01-07
申请号:CN202111104914.9
申请日:2021-09-18
Applicant: 厦门钨业股份有限公司 , 厦门金鹭特种合金有限公司
Abstract: 本发明涉及一种超细晶无粘结相硬质合金的制备方法,包括:按照所述超细晶无粘结相硬质合金的成分称量原料粉末,向所述原料粉末中添加碳粉以形成混合物,将所述混合物于惰性气氛中进行研磨混合处理,得到混合粉末,所述碳粉的添加量为Ctotal;对所述混合粉末进行成型处理,得到坯体;对所述坯体进行脱脂处理及均匀化热处理;对均匀化热处理后的所述坯体进行氧化处理;对氧化处理后的所述坯体进行烧结处理,得到致密的、无石墨相和脱碳相的超细晶无粘结相硬质合金。所述硬质合金的晶粒细小,具有较好的强度、硬度和抛光光洁度。
-
公开(公告)号:CN119663182A
公开(公告)日:2025-03-21
申请号:CN202411895800.4
申请日:2024-12-20
Applicant: 厦门钨业股份有限公司 , 厦门金鹭特种合金有限公司
Abstract: 本发明涉及一种纳米结构涂层及其制备方法与应用,所述纳米结构涂层包括依次层叠设置的周期性涂层单元;所述周期性涂层单元包括至少3层复合结构层;所述复合结构层包括第一成分层与第二成分层;各个所述复合结构层中,第一成分层的厚度完全不同或不完全相同;各个所述复合结构层中,第二成分层的厚度完全不同或不完全相同。本发明提供的纳米结构涂层通过特定的周期性涂层单元,使纳米结构涂层同时具备薄周期的超硬度与厚周期的强韧性,将其应用于切削工具时,能够显著提升切削工具的使用寿命。
-
公开(公告)号:CN119287197A
公开(公告)日:2025-01-10
申请号:CN202411417217.2
申请日:2024-10-11
Applicant: 厦门钨业股份有限公司 , 厦门金鹭特种合金有限公司
IPC: C22C1/051 , C04B41/90 , C04B35/56 , C04B35/622 , B22F3/10 , B22F3/15 , C22C29/08 , C22C29/02 , B22F5/00
Abstract: 本发明提供了一种纳米晶无粘结相硬质合金及其制备方法与应用,所述制备方法包括如下步骤:在预烧结体表面包覆至少两层金属层,然后依次进行真空烧结与热等静压烧结,得到所述纳米晶无粘结相硬质合金;所述预烧结体的相对密度为80%至92%,且预烧结体的平均晶粒尺寸为150nm以下;本发明通过在预烧结体表面包覆至少两层金属层,实现了在较低温度下将无粘结相硬质合金烧结致密,从而解决了较高温度促进烧结致密化但导致晶粒长大与较低温度抑制晶粒长大但烧结不致密的矛盾,最终能够得到平均晶粒尺寸小于200nm,且相对密度高于99.8%的纳米晶无粘结相硬质合金。
-
公开(公告)号:CN114381690B
公开(公告)日:2024-03-01
申请号:CN202210026026.8
申请日:2022-01-11
Applicant: 厦门钨业股份有限公司 , 厦门金鹭特种合金有限公司
Abstract: 本发明涉及一种CrAlMeN‑CrAlN纳米多层结构涂层及其制备方法与用途,所述涂层为依次沉积的周期性涂层单元,所述周期性涂层单元包括CrAlMeN层、CrAlN层和两层过渡层,其中一层过渡层设置在所述CrAlMeN层和CrAlN层之间;所述CrAlMeN层中Me包括Zr、Hf、V、Ta、Nb、Ti、W、Mn、Mo或Si中的任意一种或至少两种组合;所述过渡层的化学式为Crx2Aly2Me(1‑x2‑y2)N,其中0.25≤x2≤0.45,0.5≤y2≤0.75,0.01≤1‑x2‑y2≤0.1。所述纳米多层结构涂层具有优异的超硬性、强韧性、结合强度高、抗开裂、耐腐蚀和耐氧化等性能。
-
公开(公告)号:CN116698654A
公开(公告)日:2023-09-05
申请号:CN202310796378.6
申请日:2023-06-30
Applicant: 厦门钨业股份有限公司 , 厦门金鹭特种合金有限公司
Abstract: 本发明公开了一种圆盘刀超声切割锋利度检测方法及检测装置,通过记录圆盘刀切割被切割材料前后的小楔角刃口半径计算圆盘刀刃口切割衰减系数,通过建立圆盘刀在X轴和Y轴上进行移动切割被切割材料的受力大小与受力时间的变化曲线,将圆盘刀切割被切割材料的过程分为三个阶段,再根据圆盘刀在三个阶段做出的功、切割前后的小楔角刃口半径、切割的时间、切割的长度以及切割过程竖直方向振动功、超声振动频率、被切割材料的硬度和断裂韧性计算出圆盘刀的超声切割锋利度,提高圆盘刀的超声切割测试的准确性,更能真实反映超声振动工况下圆盘刀的超声切割锋利度。
-
公开(公告)号:CN115341175A
公开(公告)日:2022-11-15
申请号:CN202210978136.4
申请日:2022-08-16
Applicant: 厦门钨业股份有限公司 , 厦门金鹭特种合金有限公司
IPC: C23C14/16 , C23C14/32 , C22C30/00 , C23C14/35 , C23C14/54 , C23C24/10 , G01N3/40 , G01N3/58 , G01N5/02 , G01N19/04 , G01N23/2251
Abstract: 本发明提供了一种稀土掺杂高熵合金涂层,稀土掺杂高熵合金涂层为Re‑HEA‑M,所述HEA为高熵合金;所述Re为稀土元素;所述M为非金属元素,选自C、O或N中的至少一种;所述HEA与Re的原子比为(94‑99.75):(0.25‑6);所述M的含量为0‑2wt%;所述Re用于被激发时发射可被检测接收波长的光。该涂层致密、无裂纹和缩孔等缺陷,强度高、抗氧化性好、与基体结合力强,具有该涂层的切削工具可采用检测器接收来自涂层或者排屑槽、切屑上发出的发光信号,从而判断是否需要更换切削工具,相比于目前人工停机判断或者基于经验法则、固定使用时长更换,显著提升效率并且大幅提升涂层切削工具的使用效率,降低生产成本。
-
公开(公告)号:CN114289745A
公开(公告)日:2022-04-08
申请号:CN202111648314.9
申请日:2021-12-29
Applicant: 厦门钨业股份有限公司 , 厦门金鹭特种合金有限公司
Abstract: 本发明涉及硬质合金切削工具技术领域,尤其涉及一种切削工具。本发明提供了一种切削工具,包括:基体以及复合在所述基体上的涂层;所述涂层包含至少一层由具有以下织构系数的α‑Αl2O3晶粒构成的α‑Αl2O3涂层;所述α‑Αl2O3涂层中,TC(122)≥3;TC(012)、TC(104)、TC(110)、TC(113)、TC(024)、TC(116)、TC(214)、TC(300)均小于1;织构系数TC(hkl)定义如式(1)所示。本发明提供的切削工具的涂层具有(122)晶面择优取向,显著提升了切削工具在切削时的韧性,抗冲击能力和耐磨损能力较优,可应用于铸铁类切削。
-
公开(公告)号:CN114457304B
公开(公告)日:2023-12-19
申请号:CN202210026654.6
申请日:2022-01-11
Applicant: 厦门钨业股份有限公司 , 厦门金鹭特种合金有限公司
Abstract: 本发明涉及一种TiAlMeN‑TiAlN纳米多层结构涂层及其制备方法与用途,所述涂层为依次沉积的周期性涂层单元,所述周期性涂层单元包括TiAlMeN层、TiAlN层和两层过渡层,其中一层过渡层设置在所述TiAlMeN层和TiAlN层之间;所述TiAlMeN层中Me包括Zr、Hf、V、Ta、Nb、Cr、W、Mn、Mo或Si中的任意一种或至少两种组合;所述过渡层的化学式为Tix2Aly2Me(1‑x2‑y2)N,其中0.3≤x2≤0.5,0.45≤y2≤0.7,0.01≤1‑x2‑y2≤0.1。所述纳米多层结构涂层具有优异的超硬性、强韧性、结合强度高、抗开裂、耐腐蚀和耐氧化等性能。
-
公开(公告)号:CN116288184A
公开(公告)日:2023-06-23
申请号:CN202310161284.1
申请日:2023-02-24
Applicant: 厦门钨业股份有限公司 , 厦门金鹭特种合金有限公司
Abstract: 本发明属于涂层领域,具体涉及一种纳米多层复合涂层及其制备方法和应用。所述纳米多层复合涂层包括A层和B层,所述A层和B层以周期性A‑B‑A‑B或B‑A‑B‑A的方式排列,所述A层以ZrAlN立方相作为主体结构且其组成以化学式Zrx1(Alx2Hfx3Mex4)Nx5表示,所述B层以HfAlN立方相作为主体结构且其组成以化学式Hfy1(Aly2Zry3Me`y4)Ny5表示。本发明提供的纳米多层复合涂层兼具有超硬度、强韧性及高结合力强度,进而具备长切削寿命。
-
公开(公告)号:CN115774911A
公开(公告)日:2023-03-10
申请号:CN202211505787.8
申请日:2022-11-29
Applicant: 上海交通大学 , 厦门金鹭特种合金有限公司 , 厦门钨业股份有限公司 , 江苏海博工具产业研究院有限公司
IPC: G06F30/17 , B23Q17/09 , G06F30/20 , G06N3/006 , G06F119/14 , G06F119/02
Abstract: 一种基于铣削力信号的铣刀安装误差在线辨识方法,通过对铣刀的一个旋转周期下的旋转角度进行离散化得到一系列角微元,并对铣刀的刀具形状和加工参数沿着轴向进行离散化得到一系列轴向微元;依次计算每个刀齿的每个轴向微元在离散时刻的瞬时切削厚度和每个刀齿周期内对应的该刀齿的总铣削厚度后,确定不同刀齿周期对应的总铣削厚度的理论值,进而得到不同刀齿对应的铣削力积分比值;再根据铣削加工过程中实际测量的铣削力,计算每个刀齿对应的铣削力曲线对时间的积分,然后求得不同刀齿周期对应的铣削力积分比值并建立关于铣削力积分比值和铣削力积分比值的优化函数,利用PSO算法优化达到最小值,进而得到刀具安装误差的参数。本发明不需要提前知道工件‑刀具副的铣削力系数即可显著提高安装精度。
-
-
-
-
-
-
-
-
-