-
公开(公告)号:CN118447304A
公开(公告)日:2024-08-06
申请号:CN202410547182.8
申请日:2024-05-06
Applicant: 南通大学
IPC: G06V10/764 , G06V10/44 , G06V10/80 , G16H50/20
Abstract: 本发明提供了基于模糊超盒质量感知神经网络的精神分裂症分类方法,属于智能医学处理技术领域,解决了精神分裂症患者动态脑网络多个时间窗口数据质量不一致的问题;其技术方案为:利用三个特殊的卷积滤波器提取精神分裂症患者动态脑网络每个时间窗口的特征,然后通过全连接层和激活层以获得证据;将多视图证据作为输入构造多视图模糊最小最大神经网络分类器,输出每个视图的类节点;使用证据理论直接建模不确定性,计算每个视图的质量感知权重以评估每个视图的分类可信度;根据每个视图的质量感知权重集成多个视图的类节点以得到最终诊断结果。本发明的有益效果为:本发明分类精度较好,为精神分裂症诊断提供决策支持,提高患者就医满意度。
-
公开(公告)号:CN117542503A
公开(公告)日:2024-02-09
申请号:CN202311334208.2
申请日:2023-10-16
Applicant: 南通大学
IPC: G16H50/20 , G06F18/241 , G06F18/213 , G06F18/25 , G06N3/042 , G06N3/0464 , G06N3/048 , G06N3/08 , A61B5/00 , A61B5/055 , A61B5/16
Abstract: 本发明提供了基于动态证据融合神经网络的精神分裂症多视图分类方法,属于智能医学处理技术领域;其技术方案为:利用边缘到边缘、边缘到节点和节点到图卷积滤波器提取精神分裂症患者动态脑网络连接矩阵每个视图的特征图;将每个视图的特征图分别通过全连接层和激活层以获得多视图动态证据;根据动态证据导出迪利克雷分布参数,调整置信度后构建动态信任函数并计算每个视图的动态信任函数;在分类的决策层进行证据融合后获得联合信任函数;使用多视图损失函数训练神经网络。本发明的有益效果为:本发明分类精度较好,为精神分裂症诊断提供决策支持,提高患者就医满意度。
-
公开(公告)号:CN116665906B
公开(公告)日:2023-12-26
申请号:CN202310601158.3
申请日:2023-05-25
Applicant: 南通大学
Abstract: 本发明提供了一种基于相似性孪生网络的静息态功能磁共振脑龄预测方法,属于医学图像智能诊断技术领域,解决了传统脑龄预测方法中准确性和稳定性不足的技术问题。其技术方案为:包括以下步骤:S1:采集被试的功能性磁共振成像rs‑fMRI数据;S2:构建孪生神经网络;S3:设计特征相似性与标签相似性度量模块;S4:定义置信度评估脑龄预测模块;S5:将测试数据集中的脑部影像数据输入到该模型中进行分析,从而得出每个测试数据样本的预测脑龄。本发明的有益效果为:预测准确率高,对脑影像数据进行精确的预测,帮助医生更准确地评估患者的脑龄。
-
公开(公告)号:CN116452865B
公开(公告)日:2023-11-07
申请号:CN202310345231.5
申请日:2023-04-03
Applicant: 南通大学
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06N3/043 , G06N3/047 , G06N3/082 , G06N3/045
Abstract: 本发明提供了一种基于模糊逻辑的跳跃式注意力肺部病理图像分类方法,属于肺部组织病理图像分类技术领域,解决了相似形态和结构下复杂肺部病理组织图像分类准确率低的技术问题。其技术方案为:先从肺部病理图像数据集中连续读取RGB病理图像,构建基于模糊逻辑的隶属函数和非隶属函数,对肺部病理图像数据进行模糊处理;再次构建跳跃式多头自注意力算法,通过将前半部分的特征按规则连接到后半部分的特征中,提取肺部病理图像特征;根据模糊规则去模糊化得到的数据,并输入多层感知机,得到每种分类的概率分布,取概率最高的作为最终分类结果。本发明的有益效果为:为肺部组织病理图像的分类提供决策支持,提升病理医生工作效率。
-
公开(公告)号:CN116665906A
公开(公告)日:2023-08-29
申请号:CN202310601158.3
申请日:2023-05-25
Applicant: 南通大学
Abstract: 本发明提供了一种基于相似性孪生网络的静息态功能磁共振脑龄预测方法,属于医学图像智能诊断技术领域,解决了传统脑龄预测方法中准确性和稳定性不足的技术问题。其技术方案为:包括以下步骤:S1:采集被试的功能性磁共振成像rs‑fMRI数据;S2:构建孪生神经网络;S3:设计特征相似性与标签相似性度量模块;S4:定义置信度评估脑龄预测模块;S5:将测试数据集中的脑部影像数据输入到该模型中进行分析,从而得出每个测试数据样本的预测脑龄。本发明的有益效果为:预测准确率高,对脑影像数据进行精确的预测,帮助医生更准确地评估患者的脑龄。
-
公开(公告)号:CN120067379A
公开(公告)日:2025-05-30
申请号:CN202510132059.4
申请日:2025-02-06
Applicant: 南通大学
IPC: G06F16/583 , G06F16/55 , G06V10/762 , G06V10/44 , G06V10/82 , G06N3/043 , G06N3/0455 , G06N3/08
Abstract: 本发明提供了基于模糊哈希网络的医学图像检索方法,解决了当前深度哈希算法在医学图像检索中面临的图像复杂性、不确定性以及数据不平衡的技术问题。其技术方案为:首先,建立医学图像数据库并划分测试集和训练集;其次,基于模糊规则构建模糊哈希网络;然后,计算哈希中心损失、平衡损失、量化损失和分类损失;再次,根据损失函数采用交替学习算法优化网络参数;最后,从测试集读取图像,检索数据库中相似的图像,并计算检索的平均精度。本发明的有益效果为:增强了对医学图像中不确定性信息和类别不平衡问题的处理能力,提高了医学图像检索的准确性。
-
公开(公告)号:CN119942136A
公开(公告)日:2025-05-06
申请号:CN202510021994.3
申请日:2025-01-07
Applicant: 南通大学
IPC: G06V10/40 , G06V10/764 , G06V10/774 , G16H50/20 , G06N3/0455 , G06N3/048 , G06N3/08
Abstract: 本发明提供了一种基于直觉模糊编码器的阿尔茨海默症图像特征选择方法,属于医学信息智能处理技术领域,解决了阿尔茨海默症分析时高维特征冗余,分类效果不佳的技术问题。技术方案为:包括以下步骤:S10采集被试的阿尔茨海默症试样本集进行预处理;S20计算每个样本的隶属度和非隶属度,构建基于直觉模糊集的得分矩阵;S30预训练一个全局样本的直觉模糊自动编码器模型;S40构建稀疏特征编码网络,迁移学习参数,对权重矩阵进行稀疏化处理以获得重要特征。本发明的有益效果为:能够有效处理病理数据特征冗余问题,既降低数据维度以减少计算需求,又提高了分类准确率,为实际临床诊断提供了技术支持。
-
公开(公告)号:CN119049713A
公开(公告)日:2024-11-29
申请号:CN202411142024.0
申请日:2024-08-20
Applicant: 南通大学
IPC: G16H50/30 , G16H50/70 , G06N3/045 , G06N3/0464 , G06N3/084 , G06N3/0985 , G06F18/25 , A61B5/055 , A61B5/00
Abstract: 本发明提供了一种基于优化排序对比损失函数的脑龄协同预测方法,属于深度学习与医学影像技术领域,包括以下步骤:S1:收集受试者的脑部核磁共振成像数据集,按比例划分为训练集、验证集和测试集;S2:构建多模态模糊融合脑龄协同预测模型;S3:将训练集输入模型,采用优化排序对比损失函数进行训练,通过反向传播算法更新模型参数;S4:将验证集输入模型,进行超参数调优和模型选择,确定最佳模型参数;S5:将测试集输入最佳模型,进行年龄预测,并将预测结果与真实年龄比较,评估模型性能。本发明基于优化排序对比损失函数进行多模态模糊融合预测,充分利用多模态数据的信息,提高脑龄预测的准确性和稳定性。
-
公开(公告)号:CN118314382A
公开(公告)日:2024-07-09
申请号:CN202410386292.0
申请日:2024-04-01
Applicant: 南通大学
IPC: G06V10/764 , G06V10/774 , G06V10/776 , G06V10/44 , G06V10/82 , G06N3/0464 , G06N3/045 , G06N3/084 , G06N3/0985
Abstract: 本发明提供了一种基于Vision Transformer的肺部癌变病理学图像分类方法,属于医疗影像处理、图像识别与分类技术领域。解决了现有方法在肺部组织医学图像的处理中难以精确分类癌变组织的技术问题。其技术方案为:包括以下步骤:1.获取肺组织癌变病理学图像作为训练数据集;2.对训练数据集和验证数据集增加随机裁剪、随机旋转、色彩抖动的数据增广操作;3.构建基于Vision Transformer的肺组织癌变病理学图像分类模型;4.训练经过改进的Vision Transformer分类模型;5.在模型训练至阈值后,停止训练。本发明的有益效果为:提升了肺组织癌变病理学图像的分类精度和效率。
-
公开(公告)号:CN118093911A
公开(公告)日:2024-05-28
申请号:CN202410234959.5
申请日:2024-03-01
Applicant: 南通大学
IPC: G06F16/51 , G06F16/583 , G06N3/0464 , G06N3/0455 , G06N3/08
Abstract: 本发明提供了用于医学图像检索目标攻击的模糊Transformer哈希方法,解决了目前深度哈希模型在医学图像检索中鲁棒性差、易受对抗样本影响的技术问题。其技术方案为:建立医学图像数据库,构建模糊Transformer哈希模型,模型主要有四个部分:视觉Transformer哈希模型、原型网络、残差模糊生成器和判别器;计算各部分的损失函数以及采用交替学习算法优化;将测试集生成的原型码和对抗样本作为查询样本在数据库中检索,并使用目标平均精度t‑MAP评估模型的目标攻击性能。本发明的有益效果为:增强了在医学图像检索过程中模型的鲁棒性和抗干扰性,提高了医学图像检索的准确率。
-
-
-
-
-
-
-
-
-