基于模糊超盒质量感知神经网络的精神分裂症分类方法

    公开(公告)号:CN118447304A

    公开(公告)日:2024-08-06

    申请号:CN202410547182.8

    申请日:2024-05-06

    Applicant: 南通大学

    Abstract: 本发明提供了基于模糊超盒质量感知神经网络的精神分裂症分类方法,属于智能医学处理技术领域,解决了精神分裂症患者动态脑网络多个时间窗口数据质量不一致的问题;其技术方案为:利用三个特殊的卷积滤波器提取精神分裂症患者动态脑网络每个时间窗口的特征,然后通过全连接层和激活层以获得证据;将多视图证据作为输入构造多视图模糊最小最大神经网络分类器,输出每个视图的类节点;使用证据理论直接建模不确定性,计算每个视图的质量感知权重以评估每个视图的分类可信度;根据每个视图的质量感知权重集成多个视图的类节点以得到最终诊断结果。本发明的有益效果为:本发明分类精度较好,为精神分裂症诊断提供决策支持,提高患者就医满意度。

    基于模糊逻辑的跳跃式注意力肺部病理图像分类方法

    公开(公告)号:CN116452865B

    公开(公告)日:2023-11-07

    申请号:CN202310345231.5

    申请日:2023-04-03

    Applicant: 南通大学

    Abstract: 本发明提供了一种基于模糊逻辑的跳跃式注意力肺部病理图像分类方法,属于肺部组织病理图像分类技术领域,解决了相似形态和结构下复杂肺部病理组织图像分类准确率低的技术问题。其技术方案为:先从肺部病理图像数据集中连续读取RGB病理图像,构建基于模糊逻辑的隶属函数和非隶属函数,对肺部病理图像数据进行模糊处理;再次构建跳跃式多头自注意力算法,通过将前半部分的特征按规则连接到后半部分的特征中,提取肺部病理图像特征;根据模糊规则去模糊化得到的数据,并输入多层感知机,得到每种分类的概率分布,取概率最高的作为最终分类结果。本发明的有益效果为:为肺部组织病理图像的分类提供决策支持,提升病理医生工作效率。

    基于直觉模糊编码器的阿尔茨海默症图像特征选择方法

    公开(公告)号:CN119942136A

    公开(公告)日:2025-05-06

    申请号:CN202510021994.3

    申请日:2025-01-07

    Applicant: 南通大学

    Abstract: 本发明提供了一种基于直觉模糊编码器的阿尔茨海默症图像特征选择方法,属于医学信息智能处理技术领域,解决了阿尔茨海默症分析时高维特征冗余,分类效果不佳的技术问题。技术方案为:包括以下步骤:S10采集被试的阿尔茨海默症试样本集进行预处理;S20计算每个样本的隶属度和非隶属度,构建基于直觉模糊集的得分矩阵;S30预训练一个全局样本的直觉模糊自动编码器模型;S40构建稀疏特征编码网络,迁移学习参数,对权重矩阵进行稀疏化处理以获得重要特征。本发明的有益效果为:能够有效处理病理数据特征冗余问题,既降低数据维度以减少计算需求,又提高了分类准确率,为实际临床诊断提供了技术支持。

    基于优化排序对比损失函数的脑龄协同预测方法

    公开(公告)号:CN119049713A

    公开(公告)日:2024-11-29

    申请号:CN202411142024.0

    申请日:2024-08-20

    Applicant: 南通大学

    Abstract: 本发明提供了一种基于优化排序对比损失函数的脑龄协同预测方法,属于深度学习与医学影像技术领域,包括以下步骤:S1:收集受试者的脑部核磁共振成像数据集,按比例划分为训练集、验证集和测试集;S2:构建多模态模糊融合脑龄协同预测模型;S3:将训练集输入模型,采用优化排序对比损失函数进行训练,通过反向传播算法更新模型参数;S4:将验证集输入模型,进行超参数调优和模型选择,确定最佳模型参数;S5:将测试集输入最佳模型,进行年龄预测,并将预测结果与真实年龄比较,评估模型性能。本发明基于优化排序对比损失函数进行多模态模糊融合预测,充分利用多模态数据的信息,提高脑龄预测的准确性和稳定性。

    用于医学图像检索目标攻击的模糊Transformer哈希方法

    公开(公告)号:CN118093911A

    公开(公告)日:2024-05-28

    申请号:CN202410234959.5

    申请日:2024-03-01

    Applicant: 南通大学

    Abstract: 本发明提供了用于医学图像检索目标攻击的模糊Transformer哈希方法,解决了目前深度哈希模型在医学图像检索中鲁棒性差、易受对抗样本影响的技术问题。其技术方案为:建立医学图像数据库,构建模糊Transformer哈希模型,模型主要有四个部分:视觉Transformer哈希模型、原型网络、残差模糊生成器和判别器;计算各部分的损失函数以及采用交替学习算法优化;将测试集生成的原型码和对抗样本作为查询样本在数据库中检索,并使用目标平均精度t‑MAP评估模型的目标攻击性能。本发明的有益效果为:增强了在医学图像检索过程中模型的鲁棒性和抗干扰性,提高了医学图像检索的准确率。

Patent Agency Ranking