用于婴幼儿脑病历图像分割的全卷积遗传神经网络优化方法

    公开(公告)号:CN112001887A

    公开(公告)日:2020-11-27

    申请号:CN202010697178.1

    申请日:2020-07-20

    Applicant: 南通大学

    Abstract: 本发明公开了一种用于婴幼儿脑病历图像分割的全卷积遗传神经网络方法,属于医学图像信息智能处理领域,首先输入婴幼儿脑病历图像数据,对图像预处理,并根据DMPGA-FCN网络权值长度L对参数进行遗传编码初始化;然后将m个个体随机划分至遗传原生子种群Pop中并衍生孪生子种群Pop′,子种群在不相交区间确定各自交换概率pc和变异概率pm,使用遗传算子寻找最优初始权值fa;其次将fa作为前向传播计算参数,并在特征地址featuremap上做加权Q操作;最后将婴幼儿脑病历预测图像与标准分割图进行逐像素交叉熵损失计算从而反向更新权值,最终得到婴幼儿脑病历图像分割网络模型的最优权值。本方法能提高婴幼儿脑病历图像分割效率,对婴幼儿脑病的早期正确诊断和患儿脑病的康复具有重要意义。

    一种基于Spark平台的大规模眼底图像分类系统训练方法

    公开(公告)号:CN111612096A

    公开(公告)日:2020-09-01

    申请号:CN202010484386.3

    申请日:2020-06-01

    Applicant: 南通大学

    Abstract: 本发明提供了一种基于Spark平台的大规模眼底图像分类系统训练方法,包括如下步骤:S10设置执行分布式卷积神经网络训练必要的参数;S20调用所述卷积神经网络算法程序,将所述参数代入算法程序,通过分布式蛙跳算法生成所述卷积神经网络训练时的初始权值;S30使用存储的标准图像数据对所述卷积神经网络训练,寻找出最优蛙,作为下次分组权值训练的初始权值,完成所述卷积神经网络的训练;以及S40保存训练完的所述卷积神经网络模型。本发明的一种基于Spark平台的大规模眼底图像分类系统训练方法,采用混合蛙跳算法生成网络初始权值,通过分组优化策略实现卷积神经网络的分布式并行训练,可有效提高大规模眼底图像在卷积神经网络训练时的高效性和分类的准确性。

    一种用于眼底血管图像聚类分割的近似骨架蛙群编号方法

    公开(公告)号:CN110930412A

    公开(公告)日:2020-03-27

    申请号:CN201911200695.7

    申请日:2019-11-29

    Applicant: 南通大学

    Abstract: 本发明涉及到眼底血管图像聚类操作技术领域,具体来说涉及一种用于眼底血管图像聚类分割的近似骨架蛙群编号方法。本发明借助聚类方法,对眼底图像进行分割处理,根据病变点高亮的特性对病变点进行定位和剔除。为了获得更好的聚类分割效果,采用智能算法中较为有效且便于理解的混合蛙跳算法对K-means算法进行改进并使用近似骨架进一步充分利用算法获得的局部最优解,改进后的算法能有效克服原始K-means算法易于收敛至局部最优而无法有效进行图像分割缺点,获得更好的眼底血管聚类分割效果,更准确的分离出眼底血管的病变点。

    用于糖尿病性眼底图像分类的核主成分谱哈希方法

    公开(公告)号:CN110176298A

    公开(公告)日:2019-08-27

    申请号:CN201910469264.4

    申请日:2019-05-31

    Applicant: 南通大学

    Abstract: 本发明公开一种用于糖尿病性眼底图像分类的核主成分谱哈希方法。该方法首先对糖尿病性眼底图像数据进行预处理和分割操作,将处理后的眼底图像数据转化为向量形式;接着采用核主成分分析算法提取出眼底图像数据中非线性特征信息;然后将数据转化为二值码形式,利用Laplace-Beltrami算子的特征值和特征函数值表示出眼底图像样本数据;最后利用阈值将样本特征函数值转化为二值码,并运用最近邻算法在汉明空间进行糖尿病性眼底图像的有效分类。本发明能充分提取出复杂非线性糖尿病性眼底图像数据特征,具有较高的分类准确率,且能有效降低大规模眼底图像分类时计算的复杂度。

    一种基于粗糙集神经网络的眼底视网膜血管图像分割方法

    公开(公告)号:CN111815574B

    公开(公告)日:2022-08-12

    申请号:CN202010558465.4

    申请日:2020-06-18

    Applicant: 南通大学

    Abstract: 本发明提供了一种用于眼底视网膜血管图像分割的粗糙集神经网络方法,包括如下步骤:S10图像预处理,获得基于粗糙集增强眼底视网膜血管图像;S20构建U‑net神经网络模型;S30利用粒子群优化算法(PSO)对所述U‑net神经网络模型进行优化训练,获得PSO‑U‑net神经网络模型;以及S40将待测彩色眼底视网膜血管图像采用粗糙集理论进行图像增强预处理后使用所述PSO‑U‑net神经网络模型对所述待测彩色眼底视网膜血管图像分割。本发明的一种用于眼底视网膜血管图像分割的粗糙集神经网络方法,减少了医护人员的工作量,避免了医护人员经验和技能的差别对同一幅眼底图像分割结果存在的差异,有效的进行彩色眼底视网膜血管图像分割,获得更高的分割精度和效率。

    一种用于眼底血管图像聚类分割的近似骨架蛙群编号方法

    公开(公告)号:CN110930412B

    公开(公告)日:2022-04-22

    申请号:CN201911200695.7

    申请日:2019-11-29

    Applicant: 南通大学

    Abstract: 本发明涉及到眼底血管图像聚类操作技术领域,具体来说涉及一种用于眼底血管图像聚类分割的近似骨架蛙群编号方法。本发明借助聚类方法,对眼底图像进行分割处理,根据病变点高亮的特性对病变点进行定位和剔除。为了获得更好的聚类分割效果,采用智能算法中较为有效且便于理解的混合蛙跳算法对K‑means算法进行改进并使用近似骨架进一步充分利用算法获得的局部最优解,改进后的算法能有效克服原始K‑means算法易于收敛至局部最优而无法有效进行图像分割缺点,获得更好的眼底血管聚类分割效果,更准确的分离出眼底血管的病变点。

    一种用于微血管瘤病历图像的超平面近邻分类方法

    公开(公告)号:CN111242156B

    公开(公告)日:2022-02-08

    申请号:CN201911104118.8

    申请日:2019-11-13

    Applicant: 南通大学

    Abstract: 本发明公开一种用于微血管瘤病历图像的超平面近邻分类方法。该方法首先对糖尿病性眼底图像数据进行预处理和分割操作,从处理后的眼底病历图像中提取出微血管瘤病历图像的病变区域;接着将微血管瘤病变的图像区域形态学特征、纹理特征及灰度特征转化为l维数据向量xi;然后将数据分为训练数据Xtr和测试数据Xte,通过对训练数据Xtr进行训练得到一个包括分类超平面Hyper、支持向量集合Xsv、距离阈值t、最近邻居个数k、和谱哈希编码码长nb的高效分类模型;最后测试数据Xte预测时依据测试样本到分类超平面Hyper的距离与距离阈值t的关系,分别采用支持向量机模型和融合谱哈希算法的近邻算法进行预测,并综合相关预测结果。本发明能对提取出的眼底病历中微血管瘤病历图像特征进行快速有效分类,具有较高的分类准确率,大大降低了微血管瘤病历图像特征分类的执行时间。

    用于糖尿病性眼底图像分类的核主成分谱哈希方法

    公开(公告)号:CN110176298B

    公开(公告)日:2022-02-08

    申请号:CN201910469264.4

    申请日:2019-05-31

    Applicant: 南通大学

    Abstract: 本发明公开一种用于糖尿病性眼底图像分类的核主成分谱哈希方法。该方法首先对糖尿病性眼底图像数据进行预处理和分割操作,将处理后的眼底图像数据转化为向量形式;接着采用核主成分分析算法提取出眼底图像数据中非线性特征信息;然后将数据转化为二值码形式,利用Laplace‑Beltrami算子的特征值和特征函数值表示出眼底图像样本数据;最后利用阈值将样本特征函数值转化为二值码,并运用最近邻算法在汉明空间进行糖尿病性眼底图像的有效分类。本发明能充分提取出复杂非线性糖尿病性眼底图像数据特征,具有较高的分类准确率,且能有效降低大规模眼底图像分类时计算的复杂度。

    用于婴幼儿脑病历图像分割的全卷积遗传神经网络方法

    公开(公告)号:CN112001887B

    公开(公告)日:2021-11-09

    申请号:CN202010697178.1

    申请日:2020-07-20

    Applicant: 南通大学

    Abstract: 本发明公开了一种用于婴幼儿脑病历图像分割的全卷积遗传神经网络方法,属于医学图像信息智能处理领域,首先输入婴幼儿脑病历图像数据,对图像预处理,并根据DMPGA‑FCN网络权值长度L对参数进行遗传编码初始化;然后将m个个体随机划分至遗传原生子种群Pop中并衍生孪生子种群Pop′,子种群在不相交区间确定各自交换概率pc和变异概率pm,使用遗传算子寻找最优初始权值fa;其次将fa作为前向传播计算参数,并在特征地址featuremap上做加权Q操作;最后将婴幼儿脑病历预测图像与标准分割图进行逐像素交叉熵损失计算从而反向更新权值,最终得到婴幼儿脑病历图像分割网络模型的最优权值。本方法能提高婴幼儿脑病历图像分割效率,对婴幼儿脑病的早期正确诊断和患儿脑病的康复具有重要意义。

Patent Agency Ranking