-
公开(公告)号:CN109903557A
公开(公告)日:2019-06-18
申请号:CN201910159828.4
申请日:2019-03-04
Applicant: 南京邮电大学
Abstract: 本发明揭示了一种基于改进独立循环神经网络的高速公路交通流预测方法,以高速公路交通流数据为预测基础,改进并重构独立循环神经网络;将DenseBlock作为隐藏特征提取器对交通流数据提取特征图,然后对提取的特征图信息进行全局平均池化,再将池化后的结果置于由IndRNNCells组成的预测头中,学习时序信息,进行前向预测。应用本发明该预测技术方案,基于改进IndRNN的神经网络结构能够自动学习流量数据几种流量之间隐藏的特征关系,有效克服了传统网络不能考虑交通流数据潜在趋势的不足,并且达到了较高模型精度的效果。
-
公开(公告)号:CN109086803A
公开(公告)日:2018-12-25
申请号:CN201810755419.6
申请日:2018-07-11
Applicant: 南京邮电大学
Abstract: 本发明公开了基于深度学习与个性化因子的雾霾能见度检测系统,该系统包括数据库建立模块,用于构建不同能见度的雾霾能见度图片库;能见度提取模块,用于根据所述雾霾能见度图片库提取所述雾霾能见度图片中涉及场景的标志物的能见度,建立能见度坐标,并对所述雾霾能见度图片中涉及的场景进行编号,个性化因子提取模块,用于针对所述场景编号进行归一化,并将其定义为特征值,并根据场景编号提取个性化因子;神经网络训练模块,用于将所述个性化因子和所述雾霾能见度图片输入到卷积神经网络中进行训练;本发明采用基于深度学习的卷积神经网络结构能够自动提取数据集特征与传统方向比更加渐变,可以快速处理大数据集,节省了大量的训练时间。
-
公开(公告)号:CN110659594B
公开(公告)日:2022-08-30
申请号:CN201910846904.9
申请日:2019-09-09
Applicant: 南京邮电大学
Abstract: 本发明揭示了一种基于AlphaPose的人体热舒适姿态估计方法,其实现步骤主要包括:(1)使用摄像头采集视频数据;(2)预处理数据,使用AlphaPose保存包含基本骨架的图片以及关键点信息的JSON文件,而后读取保存的图片,并且将相对应的JSON文件中存储的关键点位信息提取出来;(3)根据已有的数个人体冷热状态下可能做出的动作特点构建相关算法,实现姿态估计的实际检测应用并反馈结果。本发明对普通摄像头获取的视频进行处理,无须在人体侵入式加装传感器,能够实现在非侵入的前提下,获得人体基本的热舒适状态;以此为中央空调系统(HVAC)实时地提供准确有效的反馈信号,使场景内体感更加舒适、节省能源。
-
公开(公告)号:CN109948472A
公开(公告)日:2019-06-28
申请号:CN201910160062.1
申请日:2019-03-04
Applicant: 南京邮电大学
Abstract: 本发明从姿态估计的角度出发,揭示并提出了一种新颖的非侵入式人体热舒适检测方法。首先通过问卷调查的方法定义并验证得出12个人体热舒适的姿态,而后通过计算机视频采集、图像预处理、深度图像处理、训练测试和投放应用实现姿态估计和人体热舒适检测的结果输出,其中深度图像处理包括基于骨骼节点的面域、点域锁定以及设定对应不同姿态估计的动作识别判断条件及阀值,而姿态估计得自于比较前后帧各骨骼节点坐标的变化。应用本发明检测方法于智能建筑或交通工具中,将会为中央空调系统实时提供有效的反馈信号,从而实现让场景中的人们更加舒适,并可靠地节约能源。
-
公开(公告)号:CN109214331A
公开(公告)日:2019-01-15
申请号:CN201811002540.8
申请日:2018-08-30
Applicant: 南京邮电大学
Abstract: 本发明揭示了一种基于图像频谱的交通雾霾能见度检测方法。其实现步骤主要是:(1)采集不同场景下不同能见度的高速公路雾霾能见度图片,用以建立图片库。(2)以高速公路车道线为标识物建立坐标,用以测量雾霾图片能见度;(3)对图片做余弦变换,来提取图片的高频、低频信息,作为特征;(4)将所提取特征输入深度神经网络进行训练;并应用于实测。本发明采用高低频信息作为神经网络输入特征,提高了检测精度;同时采用深度神经网络模型,对大数据集进行处理提供了便利条件。
-
-
-
-