基于动态网络表示学习的抗近邻合谋数字指纹生成方法

    公开(公告)号:CN113326485B

    公开(公告)日:2022-09-09

    申请号:CN202110494761.7

    申请日:2021-05-07

    Abstract: 本发明公开了一种基于动态网络表示学习的抗近邻合谋数字指纹生成方法,首先,用动态社交网络构造连续时间网络,利用连续时间网络的邻居结构的影响概率进行有偏向的随机游走以获得节点采样序列。然后通过Skip‑gram模型训练节点采样序列,使得网络结构上邻近的用户具有相似的用户特征向量码,依据用户特征向量码构造数字指纹可追踪到近邻的合谋用户。最后,针对单独的抗合谋码的辨识性会减弱的问题,结合上述用户特征向量码和CFF码共同构造数字指纹,可在合谋人数增多时准确追踪到合谋用户。在高交互的社交网络中合谋泄密者的关系随时间演化,本发明使用邻居结构的影响概率保留了用户之间的近邻关系,可在动态的社交网络环境下追踪到近邻合谋泄密者。

Patent Agency Ranking