一种基于面部表情识别的新生儿疼痛程度评估方法及系统

    公开(公告)号:CN108388890A

    公开(公告)日:2018-08-10

    申请号:CN201810249529.5

    申请日:2018-03-26

    Abstract: 本发明公开了一种基于面部表情识别的新生儿疼痛程度评估方法及系统,该方法包括:建立新生儿疼痛面部表情图像数据集,包括经过预处理的新生儿面部图像及其对应的表情类别标签;构建用于新生儿疼痛程度评估的深度卷积神经网络(DCCN),采用公开的大规模有标签数据集对网络进行预训练,得到初始权重参数值,再利用表情图像数据集对网络进行微调,获得训练好的网络模型;将待测试新生儿面部图像输入已训练好的网络进行表情分类识别,进而获得疼痛程度评估结果。本发明能够充分利用DCNN提取的特征,在小规模的新生儿疼痛面部表情图像数据集上能够取得较好疼痛程度评估结果,为开发一种基于面部表情识别的新生儿疼痛程度自动评估系统提供了新方法。

    基于双通道三维卷积神经网络的新生儿疼痛表情识别方法

    公开(公告)号:CN108363979A

    公开(公告)日:2018-08-03

    申请号:CN201810145292.6

    申请日:2018-02-12

    Abstract: 本发明公开了一种基于双通道三维卷积神经网络的新生儿疼痛表情识别方法,该方法包括以下步骤:(1)采集新生儿不同状态下的视频片段,按疼痛程度将视频分为n类表情,建立新生儿面部表情视频库;(2)将所述面部表情视频库中的每一个视频片段剪辑成l帧长的帧序列,对每一帧图像进行灰度化,并提取LBP特征图;(3)构造一种双通道三维卷积神经网络;(4)将所述灰度图序列及LBP特征图序列输入所述双通道三维卷积神经网络,对网络进行训练、调优,保存已训练的网络模型。该方法将深度卷积神经网络拓展应用到新生儿疼痛表情识别领域,以提高新生儿疼痛评估的准确性,为开发一种新生儿疼痛评估辅助系统提供技术支撑。

    一种基于视频分析的新生儿疼痛表情识别方法

    公开(公告)号:CN107330393A

    公开(公告)日:2017-11-07

    申请号:CN201710497579.0

    申请日:2017-06-27

    Abstract: 本发明涉及一种基于视频分析的新生儿疼痛表情识别方法,通过引入基于三维卷积神经网络的深度学习方法,将其运用于新生儿疼痛表情识别工作中,能够有效识别出新生儿处于安静、啼哭状态以及致痛性操作引起轻度疼痛、剧烈疼痛等表情,为开发新生儿疼痛自动评估系统提供一种新的途径,具体引入三维卷积神经网络,通过3D卷积核提取视频片段的时域和空域特征,避免人工提取特征的繁琐,且所提取特征更具优越性,并且在深度学习平台上自动学习并识别新生儿疼痛表情,与传统人工评估方式相比,更加客观,更加准确,并且节省了大量人力资源。

    基于双通道特征深度学习的新生儿疼痛表情识别方法

    公开(公告)号:CN106682616A

    公开(公告)日:2017-05-17

    申请号:CN201611231363.1

    申请日:2016-12-28

    Abstract: 本发明公开了一种基于双通道特征深度学习的新生儿疼痛表情识别方法。该方法首先对新生儿面部图像进行灰度化,提取局部二值模式(Local Binary Pattern,LBP)特征图谱;然后用一个双通道卷积神经网络对并行输入的新生儿面部图像的灰度图及其LBP特征图两个通道的特征进行深度学习;最后采用基于softmax的分类器对两个通道的融合特征进行表情分类,分为平静、哭、轻度疼痛、剧烈疼痛四类表情。该方法结合灰度图像及其LBP特征图谱两个通道的特征信息,能够有效地识别出平静、哭、轻度疼痛、剧烈疼痛等表情,并对新生儿面部图像的光照、噪声与遮挡问题具有很好的鲁棒性,为开发出新生儿疼痛表情识别系统提供了一种新的方法和途径。

Patent Agency Ranking