-
公开(公告)号:CN113962866A
公开(公告)日:2022-01-21
申请号:CN202111575701.4
申请日:2021-12-22
Applicant: 南京理工大学
IPC: G06T3/40 , G06T7/49 , G06N3/08 , G06V10/774 , G06V10/82
Abstract: 本发明公开了一种基于物理感知学习的散射成像目标重建方法,包括:基于散斑相关的物理先验信息,利用已知目标透过相同散射介质在固定目标和相机位置下的散斑数据进行数据增广和模型训练,而后通过训练好的学习网络对未知散射场景下未知目标位置和相机位置的散斑数据进行目标重建。本发明利用散斑相关在大景深范围下的比例关系进行数据增广,仅通过利用透过一块散射介质下固定目标位置和相机位置的散斑数据进行模型的训练,便可实现对未知散射场景下未知目标位置和相机位置下的复杂目标进行高保真准确重建,同时具有良好的鲁棒性。
-
公开(公告)号:CN111739116B
公开(公告)日:2021-01-19
申请号:CN202010684446.6
申请日:2020-07-16
Applicant: 南京理工大学
Abstract: 本发明公开基于深度神经网络透过散射介质目标定位和重建方法,其基于DINet,能用于同时预测深度信息和从单个散斑图重建目标图像;利用系统配置采集实验的图像数据和物体与散射介质间的距离;将不同位置产生的散斑模式统计模型系统配置用于采集实验的图像数据和物体与散射介质之间的距离;散斑图经过双通道网络,经定位通道网络产生深度预测值和成像通道网络进行图像复原重建。本方法能够有效地解决多任务的挑战,在复杂散射情况能够获取多个物理信息。利用多任务总损失函数,对网络的学习和训练具有更强约束力,使得多任务协同训练在定位任务中具更佳性能,提高定位精度和成像质量。
-
公开(公告)号:CN111563562B
公开(公告)日:2021-01-19
申请号:CN202010684668.8
申请日:2020-07-16
Applicant: 南京理工大学
Abstract: 本发明涉及基于卷积神经网络的单帧散射图像的彩色目标重建方法,属于机器学习与图像重建技术领域,包括:步骤1、得到散斑数据集;步骤2、构建基于卷积神经网络的单帧散射图像的彩色目标重建模型CASNet;步骤3、将ALOI数据集中对应的彩色目标数据集与散斑数据集输入单帧散射图像的彩色目标重建模型进行训练,得到训练好的彩色目标重建模型;步骤4、将采集到的单帧彩色目标散斑图像输入训练好的彩色目标重建模型得到恢复的彩色目标。本发明解决了无法实现单帧彩色宽谱目标成像的问题,填充了基于深度学习的彩色目标重建网络的空白,首次提出基于卷积神经网络的单帧散射图像的彩色目标重建模型,恢复隐藏在散射介质后彩色目标。
-
公开(公告)号:CN113920297A
公开(公告)日:2022-01-11
申请号:CN202111519123.2
申请日:2021-12-14
Applicant: 南京理工大学
Abstract: 本发明公开一种基于物理驱动的神经网络透过散射介质的彩色泛化成像方法,包括建立一个物理模型与神经网络模型互驱动的神经网络、建立一个用于采集实验图像数据的系统配置,将采集到的图像数据经过预处理后送进神经网络进行图像复原重建。本发明将基于散斑相关和散斑冗余性物理先验和多通道卷积神经网络强大的数据挖掘和映射能力的有效结合,仅利用一块介质的散斑数据即可实现透过未知散射介质的多光谱复杂目标等情况下,实现对目标的高质量恢复,有力地推动了物理感知学习方法在实际散射场景中的成像泛化成像。该方法更加充分的利用了散斑的原始信息,对实际散射场景复杂多变、目标信息特性复杂和数据难以充分获取任务。
-
公开(公告)号:CN112287571A
公开(公告)日:2021-01-29
申请号:CN202011617450.7
申请日:2020-12-31
Applicant: 南京理工大学
Abstract: 本发明涉及一种基于物理驱动的散射泛化成像方法和实验方法,属于成像分析技术领域,散射泛化成像方法,包括搭建的物理/数据模型,利用相机采集到的散斑图案,并利用散斑相关理论可作为具有普适性的物理原理来约束和指导神经网络在不同散射场景中进行泛化成像。该实验方法包括理论分析和系统实验,在搭建具体的系统实验对本方法进行系统地论述。提高泛化能力和泛化质量,以及泛化更复杂的目标等。将基于散斑相关的物理模型与深度学习的数据模型进行有机结合而大大提高神经网络模型散射泛化成像效果和成像范围。
-
公开(公告)号:CN111739117A
公开(公告)日:2020-10-02
申请号:CN202010696635.5
申请日:2020-07-20
Applicant: 南京理工大学
Abstract: 本发明公开了一种基于卷积神经网络PDSNet来实现对散射介质后的物体进行成像的方法,该方法将传统散斑相关成像算法原理结合起来,指导了网络的设计和优化,以数据驱动的方式消除了光学记忆效应OME对成像视场角FOV的限制。卷积神经网络PDSNet是一种适用于随机尺度和复杂目标的神经网络结构。实验测试了卷积神经网络PDSNet的隐藏对象恢复能力,在平均PSNR保持24dB以上的前提下,实现至少40倍的光学记忆效应范围扩展。同时,在未经训练的尺度下,恢复图像的平均PSNR在22dB以上,成功地重建了人脸等复杂目标。文中给出的实验结果验证了该方法的准确性和有效性。
-
公开(公告)号:CN111563562A
公开(公告)日:2020-08-21
申请号:CN202010684668.8
申请日:2020-07-16
Applicant: 南京理工大学
Abstract: 本发明涉及基于卷积神经网络的单帧散射图像的彩色目标重建方法,属于机器学习与图像重建技术领域,包括:步骤1、得到散斑数据集;步骤2、构建基于卷积神经网络的单帧散射图像的彩色目标重建模型CASNet;步骤3、将ALOI数据集中对应的彩色目标数据集与散斑数据集输入单帧散射图像的彩色目标重建模型进行训练,得到训练好的彩色目标重建模型;步骤4、将采集到的单帧彩色目标散斑图像输入训练好的彩色目标重建模型得到恢复的彩色目标。本发明解决了无法实现单帧彩色宽谱目标成像的问题,填充了基于深度学习的彩色目标重建网络的空白,首次提出基于卷积神经网络的单帧散射图像的彩色目标重建模型,恢复隐藏在散射介质后彩色目标。
-
-
-
-
-
-