-
公开(公告)号:CN111340182A
公开(公告)日:2020-06-26
申请号:CN202010086794.3
申请日:2020-02-11
Applicant: 无锡北邮感知技术产业研究院有限公司 , 北京邮电大学
Abstract: 本发明提供一种输入特征逼近的低复杂度CNN训练方法与装置,包括:对数据样本进行降维处理,得到数据样本的低维表征;将所述低维表征作为用于训练模型的输入数据,训练CNN模型。本发明通过降低数据样本的维度,利用降低数据量后的数据样本的低维表征作为用于训练模型的输入数据,训练模型,能够降低CNN模型训练的复杂度,降低训练模型所需存储资源和计算资源,能够在配置较低的终端设备上实现模型相关运算,扩展应用场景。
-
公开(公告)号:CN114357504B
公开(公告)日:2025-04-08
申请号:CN202111421244.3
申请日:2021-11-26
Applicant: 北京邮电大学 , 国网辽宁省电力有限公司
Abstract: 本公开实施例提供一种基于隐私保护的联邦学习方法以及相关设备。所述方法包括:根据神经网络的权重矩阵,得到行采样序列集合和列采样序列集合;根据行采样序列集合和列采样序列集合,生成低维行表征矩阵和低维列表征矩阵;接收边缘节点端发送的公钥,并根据公钥对对称密钥进行加密,得到密文,并将密文发送到边缘节点端;生成对称密钥,并根据对称密钥对行采样序列集合和列采样序列集合进行加密,得到加密后的行采样序列集合和列采样序列集合;根据低维行表征矩阵、低维列表征矩阵、加密后的行采样序列集合和加密后的列采样序列集合,生成初始化参数集合,并将初始化参数集合发送至中心服务器端。
-
公开(公告)号:CN111340182B
公开(公告)日:2024-04-02
申请号:CN202010086794.3
申请日:2020-02-11
Applicant: 无锡北邮感知技术产业研究院有限公司 , 北京邮电大学
IPC: G06N3/084 , G06N3/0464 , G06F18/213 , G06N3/048
Abstract: 本发明提供一种输入特征逼近的低复杂度CNN训练方法与装置,包括:对数据样本进行降维处理,得到数据样本的低维表征;将所述低维表征作为用于训练模型的输入数据,训练CNN模型。本发明通过降低数据样本的维度,利用降低数据量后的数据样本的低维表征作为用于训练模型的输入数据,训练模型,能够降低CNN模型训练的复杂度,降低训练模型所需存储资源和计算资源,能够在配置较低的终端设备上实现模型相关运算,扩展应用场景。
-
公开(公告)号:CN114430294A
公开(公告)日:2022-05-03
申请号:CN202111544788.9
申请日:2021-12-16
Applicant: 北京邮电大学
Abstract: 本申请提供一种对GEO卫星的对地波束校准方法、装置、电子设备及存储介质。所述方法包括:获取卫星的标校波束的测量功率值;根据测量功率值,得到卫星天线指向的俯仰角偏差及方位角偏差;根据得到的俯仰角偏差及方位角偏差,通过训练好的偏差预测模型,得到下一时刻的预测俯仰角偏差及预测方位角偏差;将所述预测俯仰角偏差及预测方位角偏差传输至卫星。对于GEO卫星,通过上述步骤,可以在获取GEO卫星俯仰角和方位角偏差先验信息模型困难的情况下,根据过往偏差数据,有效预测后续时刻的俯仰角和方位角偏差角度。从而进一步地对GEO卫星波束进行校准,降低最大地表指向偏移。
-
公开(公告)号:CN111324860A
公开(公告)日:2020-06-23
申请号:CN202010086785.4
申请日:2020-02-11
Applicant: 无锡北邮感知技术产业研究院有限公司 , 北京邮电大学
Abstract: 本发明提供一种基于随机矩阵逼近的轻量级CNN计算方法与装置,包括:对数据样本进行降维处理,得到数据样本的低维表征;对模型的权重参数进行降维处理,得到权重参数的低维权重表征;利用所述数据样本的低维表征和所述权重参数的低维权重表征进行CNN模型训练。本发明通过降低数据样本的数据量,降低网络的权重参数的数据量,利用降低维度之后的低维表征和低维权重表征进行CNN模型运算,能够降低模型运算的复杂度,降低模型运算所需存储资源和计算资源,能够在配置较低的终端设备上实现模型运算。
-
-
-
-