-
公开(公告)号:CN109359704A
公开(公告)日:2019-02-19
申请号:CN201811599644.1
申请日:2018-12-26
Applicant: 北京邮电大学
IPC: G06K9/62
Abstract: 本发明实施例提出了一种基于自适应平衡集成与动态分层决策的多分类方法,包括:根据一对多分解策略将原始数据集转化为多个二类数据集,以每个二类数据集中多数类样本与少数类样本数目分别作为参数区间上下限,平均每类准确率为评分标准,通过网格搜索法获得各子集采样数;据此综合过采样与欠采样技术平衡二类数据集以建立多个二分类子模型,通过平均法集成子模型获得二分类模型;根据所有二分类模型输出结果获取测试样本在一对多框架下决策空间位置信息,据此分别制定针对空白区、交叉区、正常区域的类别判定策略以确定样本最终类别。本发明实施例提供的技术方案,可提高一对多框架下分类模型对各类别的整体识别率。
-
公开(公告)号:CN112562771B
公开(公告)日:2022-07-26
申请号:CN202011564817.3
申请日:2020-12-25
Applicant: 北京邮电大学
IPC: G11C29/12
Abstract: 本发明实施例提出了一种基于邻域分区与隔离重构的磁盘异常检测方法,包括:收集磁盘SMART信息并筛选出有效的磁盘特征属性组成数据集,对其进行指数平滑处理得到磁盘训练集;多次随机采样训练集获得多个子训练集,在子集中以各点距其最近点的距离为半径构建磁盘特征隔离区域,将不属于任何区域的测试点作为全局异常;对于非全局异常的测试点,将其连续两个近邻点所在区域半径比作为该测试点在此区域的前异常值;包含测试点后重新构建区域,将测试点所处区域重构前后的半径比作为该测试点在此区域的后异常值;结合测试点所处所有区域的前后异常值得到异常分数,本发明实施例提供的技术方案,能有效提高异常磁盘召回率。
-
公开(公告)号:CN112163682B
公开(公告)日:2022-05-17
申请号:CN202011118535.0
申请日:2020-10-19
Applicant: 北京邮电大学
Abstract: 本发明实施例提出了一种基于信息差异图模型的电力调度自动化系统故障溯源方法,包括:选取电力调度自动化系统告警前后的历史数据,通过k‑means算法获得聚类中心,将其作为区间划分的端点,每个区间的均值作为连续特征的离散化结果;计算电力调度自动化系统组件的信息熵和组件间的传递熵,建立有无告警段的信息相关矩阵,通过其变化率衡量告警前后的差异程度,并采用归一化技术获得信息差异矩阵;提取电力调度自动化系统告警信息变化较高的特征及特征间的交互信息,进一步构建双向图和节点自信息相结合的信息差异图模型,拟合故障程度指标进行故障程度排序。本发明实施例提供的技术方案,提高电力调度自动化系统故障溯源的性能。
-
公开(公告)号:CN113128913A
公开(公告)日:2021-07-16
申请号:CN202110529495.7
申请日:2021-05-14
Applicant: 北京邮电大学
Abstract: 本发明实施例提出了一种基于反转信息熵动态集成的电力调度监控数据异常检测方法,包括:将电力调度监控历史数据划分为训练集和验证集,使用训练集训练一定数量的基分类器,基分类器的输出为输入数据属于正常类的概率;使用异常类标记方法将验证集中一部分历史数据标记为异常类;使用KNN算法从验证集中选择与待检测数据欧式距离较小的历史数据作为验证子集;使用基于反转信息熵的基分类器评价方法计算基分类器在验证子集中数据上的得分;使用基于无参数统计学假设检验的基分类器选择方法根据得分选择基分类器,平均所选基分类器的输出作为待检测数据的检测结果。本发明实施例提供的技术方案,能够降低电力调度监控数据异常检测的漏报率。
-
公开(公告)号:CN112562771A
公开(公告)日:2021-03-26
申请号:CN202011564817.3
申请日:2020-12-25
Applicant: 北京邮电大学
IPC: G11C29/12
Abstract: 本发明实施例提出了一种基于邻域分区与隔离重构的磁盘异常检测方法,包括:收集磁盘SMART信息并筛选出有效的磁盘特征属性组成数据集,对其进行指数平滑处理得到磁盘训练集;多次随机采样训练集获得多个子训练集,在子集中以各点距其最近点的距离为半径构建磁盘特征隔离区域,将不属于任何区域的测试点作为全局异常;对于非全局异常的测试点,将其连续两个近邻点所在区域半径比作为该测试点在此区域的前异常值;包含测试点后重新构建区域,将测试点所处区域重构前后的半径比作为该测试点在此区域的后异常值;结合测试点所处所有区域的前后异常值得到异常分数,本发明实施例提供的技术方案,能有效提高异常磁盘召回率。
-
公开(公告)号:CN111091201A
公开(公告)日:2020-05-01
申请号:CN201911339988.3
申请日:2019-12-23
Applicant: 北京邮电大学
Abstract: 本发明实施例提出了一种基于数据分区混合采样的不平衡集成分类方法,包括:根据少数类邻域中的多数类占比将样本空间划分为四个区域:多数类安全区、少数类安全区、边界区、少数类噪声区,根据每个少数类邻域的多数类占比与其总和的比值生成权值,据此确定每个少数类邻域的合成数目,以随机线性插值方式对边界区少数类进行过采样;对多数类安全区采用随机欠采样,剔除少数类噪声区样本但保留少数类安全区样本,生成平衡数据集;构建三种集成学习模型:偏向多数类的原始模型、局部域加强和削弱模型、偏向外围边界的混合模型,根据放入原始数据集的测试点近邻的不平衡程度,自适应地选择相应的模型。
-
-
-
-
-