-
公开(公告)号:CN109784142B
公开(公告)日:2020-12-04
申请号:CN201811422749.X
申请日:2018-11-27
Applicant: 北京理工大学
Abstract: 本发明提供了一种基于条件随机投影特征的高光谱目标检测方法,能够实现目标的准确、快速检测,并且能够提高对训练样本数量的敏感度。在高光谱影像光谱数据的表征方面提出一种基于条件随机投影的有监督特征选择与特征提取方法。获得与数据和标签有关的投影参数矩阵,通过该投影参数矩阵获得条件随机特征,所以提高了目标检测的准确度;同时整个运算求取过程中增加了筛选估计和采样,筛选估计和采样的运算所用时间不多,训练时间短,并且筛选估计和采样的运算是在离线阶段完成,实际运行时直接使用训练获得的结果,因此该方法具有检测的准确度、测试运行效率高的优点。
-
公开(公告)号:CN106887011B
公开(公告)日:2019-11-15
申请号:CN201710042486.9
申请日:2017-01-20
Applicant: 北京理工大学
IPC: G06T7/246
Abstract: 本发明公开了一种基于CNN和CF的多模板目标跟踪方法,本发明中提出利用若干固定的尺度值的方法,在求解卷积操作前先将模板归一化大小,然后在得到最大响应值之后反推出最合适的尺度;虽然在现有的DSST算法中,采用将三维空间最优尺度搜索分解为在二维空间搜寻最佳位置,在一维空间内搜索最优尺度的机制,但是迭代慢并且计算复杂度高;而针对实无人机平台运动随意,速度不定等特点,采用固定尺度值的方法,不仅满足跟踪算法需要,而且满足运算的实时性;特征提取阶段,将这两种特征进行分别提取,并训练出两组不同的滤波器,根据当前目标的外观和背景变化,设定不同权重,进行目标的外观表征。然后将通过不同特征得到的结果进行融合,得到跟踪结果。
-
-
公开(公告)号:CN113052852B
公开(公告)日:2023-05-05
申请号:CN202110045335.5
申请日:2021-01-12
Applicant: 北京理工大学
Abstract: 本公开的基于可编程逻辑电路的图像分割方法,通过输入并存储原始图像数据,根据原始图像的尺寸对所述原始图像进行截取得到预处理方形图像;对所述预处理方形图像进行统计、计算得到所述原始图像的图像阈值;将所述图像存储模块存储的原始数据与所述图像阈值进行比较,当所述原始数据大于等于所述图像阈值时,将所述原始数据所对应的二值图像置为1,否则置为0,得到所述原始图像的二值化分割图像。能够解决图像分割算法实时实现在精度高时处理速度慢和硬件开销大问题,同时消除利用FPGA实现时,处理速度提升和硬件开销降低后,处理精度低的问题。
-
公开(公告)号:CN114707649A
公开(公告)日:2022-07-05
申请号:CN202210312193.9
申请日:2022-03-28
Applicant: 北京理工大学
Abstract: 本公开通用卷积运算装置,包括运算参数接收及解析模块、图像数据和权重参数接收及解析模块、状态控制模块、第一数据参数控制模块、第二数据参数控制模块、第三数据参数控制模块、卷积运算模块、存储器模块、卷积结果处理模块和处理结果输出模块。通过各模块采用全并行流水处理架构进行设计,通过卷积层数、卷积运算精度、卷积运算方式、卷积运算次数、特征图数据处理方法等工作参数实现卷积运算模块的工作流程控制,满足当前主流的卷积神经网络的卷积运算的需求;简化计算架构,提高计算效率和设计效率,通用化程度高、灵活型好、能效比高,能够并行完成多个多种卷积核大小的卷积运算,具备良好的扩展性和裁剪性。
-
公开(公告)号:CN108734122B
公开(公告)日:2022-05-20
申请号:CN201810471321.8
申请日:2018-05-17
Applicant: 北京理工大学
IPC: G06V20/13 , G06V10/774 , G06V10/764 , G06K9/62 , G06T7/00 , G06T7/136
Abstract: 本发明提供一种基于自适应样本选择的高光谱城区水体检测方法,在高光谱近红外谱段图像的预处理方面,通过质量评价SSIM的方法去除噪声波段图像,采用两次平均操作进一步消除噪声,能够获取更加稳定的近红外谱段的均值图像,与传统单波段阈值分割方法相比,无需人工选择待分割图像;本发明将无监督的阈值分割方法提取疑似水体区域,再通过有监督的特征学习与分类器训练,从疑似水体区域中剔除在近红外谱段与水体较为相似的建筑阴影、建筑屋顶沥青等地物;因此,本发明将无监督的阈值分割方法与有监督的特征学习与分类器训练方法相结合,具备城区观测场景的自适应能力,能够实现实测场景数据“现采集、现处理”,且虚警较低。
-
公开(公告)号:CN106886760B
公开(公告)日:2019-08-16
申请号:CN201710052487.1
申请日:2017-01-24
Applicant: 北京理工大学
Abstract: 本发明提供了一种基于空谱信息结合的高光谱舰船检测方法,能够解决现有舰船检测方法中舰船目标的检测的准确度和虚警的问题。本发明方法中涉及基于类间差异性的无监督光谱子区间筛选方法,是一种准确、快速、鲁棒性强的无监督光谱波段筛选方法。阈值分割中加入了水域的相对稳定性,极大削弱了亮度值较低的非水域区域对检测结果的干扰,能够实现十分准确的海陆分割结果,该方法简单、快速并且自适应。本发明提出了对RX异常检测结果进行空间特征增强的方法,即利用二维本征模态分解重构图像,并且该方法是自适应的,完全依赖数据本身的结构。本方法利用物质的光谱特征分析物质的主要材质构成,所有光谱均可由光谱字典中光谱向量线性组合得到。
-
公开(公告)号:CN108734122A
公开(公告)日:2018-11-02
申请号:CN201810471321.8
申请日:2018-05-17
Applicant: 北京理工大学
Abstract: 本发明提供一种基于自适应样本选择的高光谱城区水体检测方法,在高光谱近红外谱段图像的预处理方面,通过质量评价SSIM的方法去除噪声波段图像,采用两次平均操作进一步消除噪声,能够获取更加稳定的近红外谱段的均值图像,与传统单波段阈值分割方法相比,无需人工选择待分割图像;本发明将无监督的阈值分割方法提取疑似水体区域,再通过有监督的特征学习与分类器训练,从疑似水体区域中剔除在近红外谱段与水体较为相似的建筑阴影、建筑屋顶沥青等地物;因此,本发明将无监督的阈值分割方法与有监督的特征学习与分类器训练方法相结合,具备城区观测场景的自适应能力,能够实现实测场景数据“现采集、现处理”,且虚警较低。
-
公开(公告)号:CN106887011A
公开(公告)日:2017-06-23
申请号:CN201710042486.9
申请日:2017-01-20
Applicant: 北京理工大学
IPC: G06T7/246
Abstract: 本发明公开了一种基于CNN和CF的多模板目标跟踪方法,本发明中提出利用若干固定的尺度值的方法,在求解卷积操作前先将模板归一化大小,然后在得到最大响应值之后反推出最合适的尺度;虽然在现有的DSST算法中,采用将三维空间最优尺度搜索分解为在二维空间搜寻最佳位置,在一维空间内搜索最优尺度的机制,但是迭代慢并且计算复杂度高;而针对实无人机平台运动随意,速度不定等特点,采用固定尺度值的方法,不仅满足跟踪算法需要,而且满足运算的实时性;特征提取阶段,将这两种特征进行分别提取,并训练出两组不同的滤波器,根据当前目标的外观和背景变化,设定不同权重,进行目标的外观表征。然后将通过不同特征得到的结果进行融合,得到跟踪结果。
-
公开(公告)号:CN115267756A
公开(公告)日:2022-11-01
申请号:CN202210456355.6
申请日:2022-04-27
Applicant: 北京理工大学 , 北京电子工程总体研究所
IPC: G01S11/12 , G06V10/764 , G06V10/82 , G06V20/56 , G06T7/80
Abstract: 本发明公开了一种基于深度学习目标检测的单目实时测距方法,主要包括对目标底部所在地面位置的实时获取、相机内参数标定、相机安装参数估算和目标距离计算;针对传统单目测距模型测距精度低、实时性差的问题,本发明应用当前性能先进的轻量级深度学习实时目标检测技术以获取目标底部的图像坐标;并对现有损失函数进行优化,使其更适应于测距需求。针对手动测量摄像头安装参数的不便和极易引入测量误差的问题,本发明通过地面参照点的三维空间坐标与所对应的图像坐标的映射关系,自动估计摄像头的安装参数信息。该方法具有操作简便、精度高、实时性好的特点,可应用于智能驾驶、机器人等多种需求视觉测距场景。
-
-
-
-
-
-
-
-
-