-
公开(公告)号:CN111625010B
公开(公告)日:2023-04-14
申请号:CN202010350592.5
申请日:2020-04-28
Applicant: 北京控制工程研究所
IPC: G05D1/08
Abstract: 一种基于组合滤波的航天器三超近零误差跟踪控制方法,适用于目标跟踪且具有载荷超高精度确定需求的领域。与传统的航天器星体平台单级姿态控制不同,本发明针对具有“超高精度指向”、“超高稳定度控制”、“超敏捷控制”等“三超”控制性能的航天器平台提出了基于组合滤波的星体‑载荷‑快反镜三级姿态协同控制方法,利用深度学习提高对目标的位姿解算,并从星体、载荷、快反镜三级系统逐级提高姿态控制精度,为光学载荷快速跟踪和高质量成像提供高精度姿态控制。本发明方法主要思路为:建立三级协同控制系统动力学模型;基于深度学习的目标航天器特征部位位姿解算;设计多级系统融合滤波器;设计三级协同控制系统控制器,包括带宽设计。
-
公开(公告)号:CN111580532B
公开(公告)日:2023-04-14
申请号:CN202010351845.0
申请日:2020-04-28
Applicant: 北京控制工程研究所
IPC: G05D1/08
Abstract: 一种航天器多级系统的聚合分离三超控制方法,适用于天文观测、高分辨率对地观测等具有载荷超高精度确定需求的领域。针对具有“超高精度指向”、“超高稳定度控制”、“超敏捷控制”等三超控制性能的航天器平台进行星体‑载荷‑快反镜三级姿态复合控制,从星体、载荷、快反镜三级系统逐级提高姿态控制精度,为光学载荷高质量成像提供高精度姿态控制。主要思路为:当航天器作快速机动任务时,载荷不进行姿态控制,通过对超静平台作动器设置较大控制参数实现聚合控制;当航天器做被动推扫观测任务时,对载荷进行姿态控制,通过对载荷控制器设置较小控制参数实现分离控制;当航天器做主动推扫观测任务时,通过对载荷控制器设置适中控制参数实现协调控制。
-
公开(公告)号:CN115892513A
公开(公告)日:2023-04-04
申请号:CN202211321284.5
申请日:2022-10-26
Applicant: 北京控制工程研究所
Abstract: 一种主动指向超静平台位移敏感器配置与故障诊断方法,适用于一类敏感器可进行冗余配置的并联机构。首先,提出高可靠性的敏感器配置方法,在作动器外配置位移敏感器;然后,针对不同主动指向超静平台构型,给出维持工作的最小敏感器组合和降配置控制方法;最后,针对不同位移敏感器组合,设计分层次故障诊断方法,实现同样条件下尽可能延长主动指向超静平台的寿命。
-
公开(公告)号:CN111536983B
公开(公告)日:2022-06-03
申请号:CN202010393984.X
申请日:2020-05-11
Applicant: 北京控制工程研究所
Abstract: 本发明涉及一种航天器三超控制宽频多源多级的协同定姿方法及系统,解决航天器指向控制过程中测量敏感器难以给出大范围机动情况下的相对姿态测量问题,适用于空间视线指向控制领域。在相对轨道运动方程基础上,利用滤波估计获得追踪航天器和目标航天器的相对位置矢量、速度矢量。采用双矢量定姿方法建立目标指向姿态,并进一步通过滤波估计获得追踪航天器指向目标航天器的视线角速度信息,为航天器姿态指向控制系统提供准确的相对姿态和视线角速度信息。
-
公开(公告)号:CN112100733A
公开(公告)日:2020-12-18
申请号:CN202010718004.9
申请日:2020-07-23
Applicant: 北京控制工程研究所
IPC: G06F30/15 , G06F30/23 , G06F119/14
Abstract: 本发明一种基于三超控制的主被一体挠性作动器挠性环节与作动单元一体化应力均衡方法,适用于天文观测、高分辨率对地观测等具有载荷超高精度、超高稳定度、超敏捷控制需求的领域。本发明针对具有多级协同控制的航天器,提出了一种膜簧、柔性铰与作动单元并联一体控制结构设计方法,具有振动隔离、扰振抑制和精确指向调节的功能,实现主被一体挠性作动器过发射主动段抗力学环境的分析与应力优化设计,提升作动器过发射主动段的可靠性,可应用于主动指向超静平台设计,用于实现载荷超高精度、超高稳定度、超敏捷“三超”控制性能。
-
公开(公告)号:CN111781943A
公开(公告)日:2020-10-16
申请号:CN202010699423.2
申请日:2020-07-20
Applicant: 北京控制工程研究所
IPC: G05D1/08
Abstract: 本发明一种航天器分布式载荷位姿三超控制方法,适用于对两个载荷间相对姿态具有超高精度、超高稳定度和超高敏捷度的大型卫星平台。与传统的PID控制算法不同,本发明结合滑模控制在滑模面上的鲁棒性特点和自适应控制能够在线估计参数的特点,提出了一种星体姿态-载荷相对姿态两级复合控制方法,其中载荷相对姿态控制器用于对载荷相对姿态的精细控制,本体姿态控制器用于实现姿态快速机动和抑制低频振动,实现对载荷相对姿态的超精超稳超敏捷(三超)控制。多级协同控制思路为:1)采用前馈+反馈控制器实现载荷相对姿态的高精度指向控制,并通过载荷惯量给出控制器参数设计方法;2)针对航天器本体设计考虑带宽约束的鲁棒自适应控制器,通过参数设计方法保证航天器本体控制器能有效与载荷控制器相匹配,实现两级复合控制。
-
公开(公告)号:CN111638721A
公开(公告)日:2020-09-08
申请号:CN202010351875.1
申请日:2020-04-28
Applicant: 北京控制工程研究所
IPC: G05D1/08
Abstract: 一种航天器三超控制全链路扰动传递验证系统及验证方法,所设计的方法用于定量分析光学载荷“超高精度指向”、“超高稳定度控制”、“超敏捷控制”等三超控制技术。首先设计物理试验系统,由星体(采用三轴气浮台模拟)、主动指向超静平台、重力卸载支架、景物模拟器、平行光管等部分组成;然后依据物理模型建立结构-控制-光学分析模型,并以此进行控制器设计;最后通过实验定量分析三超控制的全链路扰动传递特性,实现扰振对三超平台观测图像质量影响的定量分析评估。
-
公开(公告)号:CN111580532A
公开(公告)日:2020-08-25
申请号:CN202010351845.0
申请日:2020-04-28
Applicant: 北京控制工程研究所
IPC: G05D1/08
Abstract: 一种航天器多级系统的聚合分离三超控制方法,适用于天文观测、高分辨率对地观测等具有载荷超高精度确定需求的领域。针对具有“超高精度指向”、“超高稳定度控制”、“超敏捷控制”等三超控制性能的航天器平台进行星体-载荷-快反镜三级姿态复合控制,从星体、载荷、快反镜三级系统逐级提高姿态控制精度,为光学载荷高质量成像提供高精度姿态控制。主要思路为:当航天器作快速机动任务时,载荷不进行姿态控制,通过对超静平台作动器设置较大控制参数实现聚合控制;当航天器做被动推扫观测任务时,对载荷进行姿态控制,通过对载荷控制器设置较小控制参数实现分离控制;当航天器做主动推扫观测任务时,通过对载荷控制器设置适中控制参数实现协调控制。
-
公开(公告)号:CN111547275A
公开(公告)日:2020-08-18
申请号:CN202010351841.2
申请日:2020-04-28
Applicant: 北京控制工程研究所
IPC: B64G1/24 , B64G1/10 , G06F30/15 , G06F30/20 , G06F119/14
Abstract: 一种航天器三超控制鲁棒自适应多级协同方法,适用于天文观测等对有效载荷姿态具有超高精度、超高稳定度和超高敏捷度的大型卫星平台。与传统的PID控制算法不同,本发明结合滑模控制在滑模面上的鲁棒性特点和自适应控制能够在线估计参数的特点,进行星体-主动指向超静平台两级复合控制。多级协同控制思路为:1)在载荷和航天器本体之间安装主动指向超静平台,根据航天器本体和载荷的质量特性设计主动指向超静平台的控制参数;2)结合滑模控制和自适应控制的思想,设计考虑带宽约束的星体鲁棒自适应控制器,使得星体控制器能够与主动指向超静平台相匹配,实现对载荷的三超控制。
-
公开(公告)号:CN111680552B
公开(公告)日:2023-10-03
申请号:CN202010350572.8
申请日:2020-04-28
Applicant: 北京控制工程研究所
IPC: G06V20/13 , G06V10/25 , G06V10/774 , G06V10/82 , G06N3/0464 , G06T3/40 , G06T7/62
Abstract: 本发明一种特征部位智能识别方法,适用于空间失效卫星局部典型部位识别领域。传统基于解析算法的目标典型部位识别存在边缘点识别误差大等问题,本发明设计了一种基于卷积神经网络的局部典型特征部位智能识别方法。首先针对失效卫星局部典型部位识别任务,创建包含丰富信息的卫星局部典型部位数据库,对典型部位的构件进行标注,构造训练数据集和测试数据集。然后构建一个深度卷积网络,使用训练数据集进行网络参数的训练,训练完成后,网络即可从输入图像中智能识别出的典型部位。
-
-
-
-
-
-
-
-
-