基于样本过滤与伪标签精炼的无监督行人重识别方法

    公开(公告)号:CN114332517A

    公开(公告)日:2022-04-12

    申请号:CN202111506192.X

    申请日:2021-12-10

    Abstract: 本公开提供了一种无监督行人重识别模型的建立方法,包括:使用图像样本数据集在源域上进行训练,获得源域模型;在目标域创建协作网络与联合网络,将源域模型的模型参数迁移至目标域,对协作网络及联合网络进行初始化;将图像样本数据集分别输入至第一临时平均模型和第二临时平均模型,获得两组图像样本,分别提取样本特征,获取两组图像样本的样本特征的平均样本特征;对图像样本数据集进行聚类处理,获得聚类中心和伪标签;对图像样本数据集进行图像样本数据集分割处理,分割为信赖集和噪声集;对联合网络以及协作网络进行交替训练,获得训练后的无监督行人重识别模型。本公开还提供了一种无监督行人重识别方法、电子设备及可读存储介质。

Patent Agency Ranking