-
公开(公告)号:CN114495019B
公开(公告)日:2022-06-21
申请号:CN202210395216.7
申请日:2022-04-15
Applicant: 中国矿业大学(北京) , 北京城建勘测设计研究院有限责任公司 , 中铁电气化局集团有限公司 , 北京京投城市管廊投资有限公司
IPC: G06V20/52 , G06V10/22 , G06V10/46 , G06V10/764 , G06K9/62
Abstract: 本发明公开了一种管廊渗漏病害的实时监测和动态反馈方法,包括:周期性地采集易渗漏部位的渗漏图像;求取渗漏水区域的面积;计算渗漏水的流量、流速;对计算得到的流量、流速进行统计分析;将每次计算得到的流量、流速与前期的统计分析结果进行对比,若有明显异常,发出初级预警;在发出初级预警时,将异常结果与分级预警阈值进行对比,若达到相应的分级预警阈值,发出二级预警;在发出二级预警时,存储当时的监测图像,判断渗漏水发生的原因;根据以往的处置方法针对性给出该病害的处理措施。本发明分析渗漏水的原因,然后进行预警,并针对渗漏水的原因提出相应的处理措施,以解决现有技术中渗漏监测和防治的不足。
-
公开(公告)号:CN119666983A
公开(公告)日:2025-03-21
申请号:CN202411943759.3
申请日:2024-12-27
Applicant: 北京城建勘测设计研究院有限责任公司 , 北京城建集团有限责任公司 , 北京工业大学
Abstract: 本发明涉及一种检测地铁盾构隧道壁后空洞的方法与系统,属于空洞检测技术领域,其中该方法,包括:在地铁隧道的管片上用记号笔标记所需要检测的点位;用回弹仪对点位进行击打,并使用加速度传感器采集该点位的振动信号;对每个点位的振动信号进行去噪处理得到去噪后的振动信号;对去噪后的振动信号进行时域转换,获得对应振动信号的频率域信号;基于去噪后振动信号的时域信号和所述频率域信号完成地铁盾构隧道壁后空洞的检测。本发明通过对采集到的数据进行去噪处理及频率域分析,可以有效地提高空洞检测结果的准确性,减少误判的可能性。
-
公开(公告)号:CN111325747A
公开(公告)日:2020-06-23
申请号:CN202010195598.X
申请日:2020-03-19
Applicant: 北京城建勘测设计研究院有限责任公司
Abstract: 本申请提供的针对矩形隧道的病害检测方法及装置,获取包括矩形隧道的内表面上采集的点云的坐标数据和点云的强度数据的原始数据,并将坐标数据确定点云映射为灰度图像中的像素的位置,强度数据转换为像素的灰度数据,从而将原始数据转换为灰度图像,通过对灰度图像进行预设类型的图像处理,检测矩形隧道的渗水区域。与人工检测方式相比,具有更高的效率和准确性。
-
公开(公告)号:CN119863456A
公开(公告)日:2025-04-22
申请号:CN202510336087.8
申请日:2025-03-21
Applicant: 北京城建勘测设计研究院有限责任公司 , 武汉大学 , 北京工业大学
Abstract: 本发明涉及一种地铁隧道结构病害类型预测方法与系统,包括:采集地铁隧道的红外图像;对所述地铁隧道红外图像进行多尺度增强得到特征增强后的地铁隧道红外图像;对每个特征增强后的地铁隧道红外图像所呈现的病害类型进行标定得到训练样本;将训练样本输入到MobileNet模型中进行训练得到地铁隧道病害类型预测模型;使用所述地铁隧道病害类型预测模型对目标地铁隧道进行监测。本发明通过对红外图像进行多尺度增强,可以提高病害特征的可辨识性,使得不同类型的病害在图像中更为明显,提升模型训练的效果。
-
公开(公告)号:CN119762544A
公开(公告)日:2025-04-04
申请号:CN202510265983.X
申请日:2025-03-07
Applicant: 北京城建勘测设计研究院有限责任公司 , 武汉大学 , 北京工业大学
Abstract: 本发明涉及一种地铁隧道结构安全预测方法与系统,包括:对激光点云数据进行校正处理得到校正后的激光点云数据;采集地铁隧道上的图像数据;提取出图像数据上的特征点;将图像数据上的特征点与校正后的激光点云数据上的激光点进行配准得到配准后的激光点云数据;当配准后的激光点云数据的值不在预设范围时,则发出警报。本发明通过激光点云和图像数据的实时采集与处理,能够快速识别和分析隧道的结构变化,及时发现潜在安全隐患。
-
公开(公告)号:CN114419421A
公开(公告)日:2022-04-29
申请号:CN202210073070.4
申请日:2022-01-21
Applicant: 中国地质大学(北京) , 北京城建勘测设计研究院有限责任公司 , 中国安全生产科学研究院
Abstract: 本发明提供了一种基于影像的地铁隧道裂缝识别系统及方法,通过自拱型组合阵列CCD相机获取的数据,获得隧道影像,并且利用深度学习算法改进的U‑Net算法对隧道面进行智能提取和检测,可以提取出地隧道裂缝病害,并在分类的基础上,对裂缝病害进行相对定位,方便检修人员直接前往故障路段进行修理,减少工作人员搜寻病害时的二次时间成本。本发明能够满足地铁盾构隧道高速、高精度的裂缝病害检测及定位要求,处理速度快,实用价值高。
-
公开(公告)号:CN105566470A
公开(公告)日:2016-05-11
申请号:CN201610056139.7
申请日:2016-01-27
Applicant: 清华大学
IPC: C07K14/415 , C12N15/29 , A01H5/00
CPC classification number: Y02A40/135 , C07K14/415 , C12N15/8273
Abstract: 本发明公开了一种通过下调PAB2和PAB8提高植物对NaCl耐受性的方法。本发明具体提供了蛋白质1和蛋白质2作为靶标在如下任一中的应用:a1)提高植物的耐盐性;a2)选育耐盐性提高的植物品种;所述蛋白质1为PAB2蛋白;所述蛋白质2为PAB8蛋白。本发明研究发现,从拟南芥生物研究中心获得的PAB2和PAB8基因双敲除突变体对NaCl耐受性增强;因此,可利用PAB2和PAB8调节植物对NaCl的耐受性。另外,也可通过基因工程手段(RNAi技术)获得PAB2和PAB8低表达、耐盐转基因作物。本发明符合可持续农业发展需求,对于研究植物耐受NaCl的分子机制、改良遗传特性,培育高效耐盐新品种等方面具有重要的实用价值和市场前景。
-
公开(公告)号:CN105481959A
公开(公告)日:2016-04-13
申请号:CN201610055502.3
申请日:2016-01-27
Applicant: 清华大学
IPC: C07K14/415 , C12N15/29 , A01H5/00
CPC classification number: C07K14/415 , C12N15/8273
Abstract: 本发明公开了一种通过下调PAB2和PAB4提高植物对NaCl耐受性的方法。本发明具体提供了蛋白质1和蛋白质2作为靶标在如下任一中的应用:a1)提高植物的耐盐性;a2)选育耐盐性提高的植物品种;所述蛋白质1为PAB2蛋白;所述蛋白质2为PAB4蛋白。本发明研究发现,从拟南芥生物研究中心获得的PAB2和PAB4基因双敲除突变体对NaCl耐受性增强;因此,可利用PAB2和PAB4调节植物对NaCl的耐受性。另外,也可通过基因工程手段(RNAi技术)获得PAB2和PAB4低表达、耐盐转基因作物。本发明符合可持续农业发展需求,对于研究植物耐受NaCl的分子机制、改良遗传特性,培育高效耐盐新品种等方面具有重要的实用价值和市场前景。
-
公开(公告)号:CN105481959B
公开(公告)日:2019-02-05
申请号:CN201610055502.3
申请日:2016-01-27
Applicant: 清华大学
IPC: C07K14/415 , C12N15/29 , A01H5/00 , A01H6/20
Abstract: 本发明公开了一种通过下调PAB2和PAB4提高植物对NaCl耐受性的方法。本发明具体提供了蛋白质1和蛋白质2作为靶标在如下任一中的应用:a1)提高植物的耐盐性;a2)选育耐盐性提高的植物品种;所述蛋白质1为PAB2蛋白;所述蛋白质2为PAB4蛋白。本发明研究发现,从拟南芥生物研究中心获得的PAB2和PAB4基因双敲除突变体对NaCl耐受性增强;因此,可利用PAB2和PAB4调节植物对NaCl的耐受性。另外,也可通过基因工程手段(RNAi技术)获得PAB2和PAB4低表达、耐盐转基因作物。本发明符合可持续农业发展需求,对于研究植物耐受NaCl的分子机制、改良遗传特性,培育高效耐盐新品种等方面具有重要的实用价值和市场前景。
-
公开(公告)号:CN105566470B
公开(公告)日:2018-11-06
申请号:CN201610056139.7
申请日:2016-01-27
Applicant: 清华大学
IPC: C07K14/415 , C12N15/29 , A01H5/00 , A01H6/20
Abstract: 本发明公开了一种通过下调PAB2和PAB8提高植物对NaCl耐受性的方法。本发明具体提供了蛋白质1和蛋白质2作为靶标在如下任一中的应用:a1)提高植物的耐盐性;a2)选育耐盐性提高的植物品种;所述蛋白质1为PAB2蛋白;所述蛋白质2为PAB8蛋白。本发明研究发现,从拟南芥生物研究中心获得的PAB2和PAB8基因双敲除突变体对NaCl耐受性增强;因此,可利用PAB2和PAB8调节植物对NaCl的耐受性。另外,也可通过基因工程手段(RNAi技术)获得PAB2和PAB8低表达、耐盐转基因作物。本发明符合可持续农业发展需求,对于研究植物耐受NaCl的分子机制、改良遗传特性,培育高效耐盐新品种等方面具有重要的实用价值和市场前景。
-
-
-
-
-
-
-
-
-