一种基于稀疏重建的大豆植株表型提取方法及系统

    公开(公告)号:CN116817754B

    公开(公告)日:2024-01-02

    申请号:CN202311082530.0

    申请日:2023-08-28

    Abstract: 一种基于稀疏重建的大豆植株表型提取方法及系统,其方法包括:对大豆植株进行多视角成像,通过密度图估计在各视图中提取植株二维关键点,包括端点关键点、节点关键点和豆粒关键点,同时通过亲和力场估计给出同一豆荚中豆粒关联关系,基于对称极线距离和二分匹配,关联各视图中的同一关键点和同一豆荚,进而通过三角测量计算各关键点的三维坐标,用于测量株高、统计豆粒的空间分布、计算节数、单株粒数和荚数等。本发明可精准且高效的提取大豆植株表型,具有较高的可行性和实用性。(56)对比文件Haoran Zhao等.Exploring BetterSpeculation and Data Locality in SparseMatrix-Vector Multiplication on IntelXeon.2020 IEEE 38th InternationalConference on Computer Design.2020,全文.Yourui Huang等.Low IlluminationSoybean Plant Reconstruction and TraitPerception.Agriculture.2022,第12卷(第12期),第2.1-2.3节.李晨雨.基于三维重建的大豆植株叶面积自动测量方法的研究.中国优秀硕士学位论文全文数据库 农业科技辑.2023,(第1期),全文.

    一种基于rPPG生理信号的人脸视频鉴伪方法和装置

    公开(公告)号:CN115953822A

    公开(公告)日:2023-04-11

    申请号:CN202310202394.8

    申请日:2023-03-06

    Abstract: 本发明公开一种基于rPPG生理信号的人脸视频鉴伪方法和装置,该方法包括以下步骤:步骤一:采集人脸视频与手指PPG信号,构建PPG信号视频数据集;搜集真实人脸视频与伪造人脸视频,构建鉴伪数据集;步骤二:使用PPG信号视频数据集作为训练数据,训练得到rPPG信号提取网络;步骤三:使用鉴伪数据集,利用步骤二训练得到的rPPG信号提取网络提取rPPG信号,后输入二元决策网络并进行网络训练;步骤四:使用通过步骤二训练获得的rPPG信号提取网络和步骤三训练获得的二元决策网络,对待检测的视频进行真伪判断。本发明使用难以伪造的rPPG生理信号用于分辨人脸伪造合成视频,可以有效提升判断准确率。

    一种实时更新余弦夹角损失函数参数的人脸识别方法

    公开(公告)号:CN112597979B

    公开(公告)日:2021-06-01

    申请号:CN202110236301.4

    申请日:2021-03-03

    Abstract: 本发明提出了一种实时更新余弦夹角损失函数参数的人脸识别方法,属于计算机视觉中的人脸识别领域。该方法包括:(1)收集人脸图像,并将人脸图像按个体分类,并对每个人脸图像进行数据标注;(2)对人脸图像进行图像预处理,得到人脸图像数据集;(3)初始化余弦夹角损失函数的的余弦值放大尺度和余弦夹角间隔;(4)将图像数据集送入卷积神经网络,实时计算更新余弦值放大尺度和余弦夹角间隔,直至完成对卷积神经网络的训练,(5)将需要进行比对判断的人脸图像输入训练好的卷积神经网络中,输出人脸特征向量,用于进行人脸识别匹配。本发明的人脸识别方法具有训练收敛速度快,识别准确率高的特点。

    一种实时更新余弦夹角损失函数参数的人脸识别方法

    公开(公告)号:CN112597979A

    公开(公告)日:2021-04-02

    申请号:CN202110236301.4

    申请日:2021-03-03

    Abstract: 本发明提出了一种实时更新余弦夹角损失函数参数的人脸识别方法,属于计算机视觉中的人脸识别领域。该方法包括:(1)收集人脸图像,并将人脸图像按个体分类,并对每个人脸图像进行数据标注;(2)对人脸图像进行图像预处理,得到人脸图像数据集;(3)初始化余弦夹角损失函数的的余弦值放大尺度和余弦夹角间隔;(4)将图像数据集送入卷积神经网络,实时计算更新余弦值放大尺度和余弦夹角间隔,直至完成对卷积神经网络的训练,(5)将需要进行比对判断的人脸图像输入训练好的卷积神经网络中,输出人脸特征向量,用于进行人脸识别匹配。本发明的人脸识别方法具有训练收敛速度快,识别准确率高的特点。

Patent Agency Ranking