基于深度强化学习实现人脸识别端边卸载计算方法及装置

    公开(公告)号:CN112069903A

    公开(公告)日:2020-12-11

    申请号:CN202010789192.4

    申请日:2020-08-07

    Abstract: 本发明公开了一种基于深度强化学习实现人脸识别端边卸载计算方法及装置,包括:获取真实的人脸图片,根据边端人脸识别模型训练得到分类数据,其中,分类数据包括图片名称、id、图片提取出的128维特征向量、终端预测置信度、终端预测值、边缘预测值;将深度学习与强化学习进行结合,定义马尔科夫决策过程的状态空间、动作集、奖励函数和智能体;根据定义好的马尔科夫决策过程,构建Actor神经网络和Critic神经网络,使用分类数据对构建好的Actor神经网络和Critic神经网络进行训练,获得智能卸载决策模型;对智能卸载决策模型的性能与基准查询策略进行对比评估;根据对比评估的结果,将智能卸载决策模型部署到智能终端设备中,进行人脸识别的任务卸载决策。

    一种基于终端设备和边缘服务器协同进行视频流处理的方法

    公开(公告)号:CN110851255B

    公开(公告)日:2022-04-15

    申请号:CN201911080332.4

    申请日:2019-11-07

    Abstract: 本发明公开一种基于终端设备和边缘服务器协同进行视频流处理的方法,所述的视频流处理划分为数据预处理、深度神经网络推理和结果处理三个阶段,终端设备的计算任务分为数据预处理TP、数据传输TD_t、神经网络推理TI、结果接收TR_r和结果处理TF,边缘服务器的计算任务分为数据接收ED_r、深度神经网络推理EI,结果传输ER_t,所述的视频预处理采用流水化方式进行任务调度,终端设备按照任务优先级,根据空闲状态执行计算任务,边缘服务器也根据任务优先级的顺序执行;其中,终端设备承担任务的优先级从高到低排序为:TR_r>TD_t>TF>TP=TI;边缘服务器承担任务的优先级从高到低排序为:ED_r>EI>ER_t。该方法在发挥边缘服务器强大算力的同时,提高了计算效率。

    一种基于AI芯片的多模型并行推理方法

    公开(公告)号:CN112783650A

    公开(公告)日:2021-05-11

    申请号:CN202110075174.4

    申请日:2021-01-20

    Abstract: 本发明公开一种基于AI芯片的多模型并行推理方法。采用的技术方案包括以下步骤:步骤一:模型转换,至少将Tensorflow/Caffe AI框架训练的模型通过转换工具转换为AI芯片可解析的OM模型;步骤二:加载转换的OM模型,并遵循AscendCL库接口,采用线程方式并行执行多个模型推理。优点如下:针对单一推理模型并不能高效利用AI芯片(如华为公司的Ascend 310芯片)的算力的不足问题,以充分挖掘Ascend 310芯片的算力,研究多模型并行推理,同时能够保持良好的性能。

    边缘场景下基于容器的可扩展分布式双队列动态分配方法

    公开(公告)号:CN112463293A

    公开(公告)日:2021-03-09

    申请号:CN202011295965.X

    申请日:2020-11-18

    Abstract: 本发明公开了边缘场景下基于容器的可扩展分布式双队列动态分配方法,包括如下步骤:S1,获取视频流数据;S2,网关服务从视频流数据中获取视频帧,并从空闲服务器队列中挑选集群内的空闲服务器处理视频帧;S3,空闲服务器上的推理服务对视频帧进行深度神经网络推理和结果处理,完成后上报网关服务当前服务器已空闲;S4,网关服务将上报空闲的服务器重新加入空闲服务器队列。组成集群进行统一深度神经网络推理的服务器协同计算模式,相比于传统的单路视频流对应单路服务器的计算模式而言,充分利用了服务器的剩余计算资源,可以将多个服务器的剩余计算资源进行整合,完成更多路视频流处理。

Patent Agency Ranking