-
公开(公告)号:CN112550680A
公开(公告)日:2021-03-26
申请号:CN202011474216.3
申请日:2020-12-14
Applicant: 之江实验室
Abstract: 本发明公开一种多旋翼无人机可折叠自适应起落架,其包括下部位置调整平台、上部位置调整平台及压力传感器、深度相机及IMU,其中,下部位置调整平台包括依次转动连接的下座、底部大腿杆、底部小腿杆,底部大腿杆、底部小腿杆能分别在电机的驱动下转动;上部位置调整平台包括转动连接的上座、连杆,连杆还与下座滑动和转动连接;压力传感器安装在底部小腿杆下方,用用检测起落架与地面的接触力;深度相机安装在下座下方,用于地形勘测;IMU安装在上座上方,用于检测起落架降落后的姿态。本发明的可折叠自适应起落架控制精度高,且能自主折叠,满足了多种复杂场景下起落架的自适应性能。
-
公开(公告)号:CN116341336B
公开(公告)日:2024-02-20
申请号:CN202310352130.0
申请日:2023-03-30
Applicant: 之江实验室
IPC: G06F30/23 , G06F30/10 , G06F119/14
Abstract: 一种仿人机器人小腿的拓扑重构方法,包括以下步骤:(1)设计初始模型;(2)将模型进行拓扑计算;(3)根据拓扑计算结果分析材料的分布特征;(4)将初始模型划分成块体单元;(5)根据材料分布特征移除被镂空的单元;(6)对边界地区的单元进行改型修补;(7)将通过移除法得到的拓扑结构进行有限元计算;(8)对应力较大的部位补充单元,应力较小区域的单元进行二次移除。本发明还提供采用一种仿人机器人小腿的拓扑重构方法的小腿模型。本发明可以有效降低拓扑结构的设计速度,对于发明中的小腿拓扑模型,能减少20%的模型重构时间,模型的材料分布特征保持率76%,模型的完整性好。
-
公开(公告)号:CN112706853A
公开(公告)日:2021-04-27
申请号:CN202110097883.2
申请日:2021-01-25
Applicant: 之江实验室
IPC: B62D57/032
Abstract: 本发明公开了一种具有多连杆结构的可重构双足机器人,该双足机器人机械结构左右对称,包括躯干部件、左腿组件和右腿组件,躯干部件与对称布置在躯干部件两侧的左腿组件和右腿组件转动连接;左腿组件包括髋部转动部件、髋部连接部件、大腿部件、小腿部件、脚掌部件、被动摆杆部件、被动连接部件、主动轮部件、从动轮部件、连杆驱动部件、连杆连接部件、连杆承接部件和连杆下端部件,左腿组件和右腿组件结构相同。本发明通过改变驱动关节以及改变机器人构型,实现双足机器人在双足和轮式运动模式之间自由切换,实现了足式机器人在不同工况下的高效移动。
-
公开(公告)号:CN111516773A
公开(公告)日:2020-08-11
申请号:CN202010255320.7
申请日:2020-04-02
Applicant: 之江实验室
IPC: B62D57/032
Abstract: 本发明公开了一种具有多种运动模式的可重构双足机器人,该双足机器人为左右对称结构,其包括躯干部件、左髋部、右髋部、左腿和右腿,躯干部件与对称布置在躯干部件的两侧的左髋部、右髋部可转动连接,左腿、右腿分别与左髋部、右髋部可转动连接;左腿包括大腿部件、小腿部件、柔性缓震部件、脚掌部件、脚趾部件、平衡连杆部件、主动轮部件、从动轮部件,左髋部和右髋部结构相同,左腿和右腿结构相同。通过改变驱动关节以及改变机器人构型,实现双足机器人的运动模式的切换,实现了足式机器人在不同场景、不同功能需求下的高效驱动。
-
公开(公告)号:CN117332523B
公开(公告)日:2024-04-16
申请号:CN202311267741.1
申请日:2023-09-27
Applicant: 之江实验室
IPC: G06F30/17 , G06F30/20 , G06F17/13 , G06F119/08 , G06F119/14
Abstract: 本说明书公开了一种基于非局域时空模型的机器人结构件优化方法及装置。所述方法包括:根据机器人结构件的全局热量耗散信息以及局部热量耗散信息对预先确定的结构件的热传导本构模型进行调整,得到用于描述结构件对应的弛豫时间与微结构特征间的关系的时空非局域热传导模型;根据时空非局域热传导模型,确定在热扩散的特征长度和结构件对应热导率与空间无关的情况下,用于确定结构件对应热扩散和热波的非局域时空特性的时空热传导控制方程;根据热传导控制方程,确定结构件对应的热力学时间信息以及热力学空间信息,并基于热力学时间信息以及热力学空间信息确定结构件的热传导温度分布图,以基于温度分布图对结构件进行优化。
-
公开(公告)号:CN117521452A
公开(公告)日:2024-02-06
申请号:CN202311479204.3
申请日:2023-11-07
Applicant: 之江实验室
IPC: G06F30/23 , G06F30/17 , G06F111/04 , G06F111/10 , G06F119/08 , G06F119/14
Abstract: 本说明书公开了一种基于时空有限元模型的机器人结构件优化方法及装置。所述方法包括:接收针对机器人结构件的仿真优化指令;基于所述结构件对应的属性信息,构建所述结构件的有限元模型;在仿真环境中对所述结构件施加热载荷,基于所述属性信息以及所述结构件在指定时间内产生的热量信息,确定所述结构件对应的时空热传导控制方程;根据所述时空热传导控制方程,确定所述有限元模型对应的全局热传导有限元方程;在预设时空边界条件的约束下,根据所述属性信息对所述全局热传导有限元方程进行解析,确定所述结构件对应的温度场分布信息,以根据所述温度场分布信息对所述结构件进行优化。
-
公开(公告)号:CN116620446A
公开(公告)日:2023-08-22
申请号:CN202310921090.7
申请日:2023-07-26
Applicant: 之江实验室
IPC: B62D57/032 , B25J11/00
Abstract: 本发明公开了一种人形机器人大腿及人形机器人、制造方法,该大腿为一体成型结构,其各组件通过选择性激光熔化工艺整体成型,无机械连接接头;该大腿包括骨架、皮肤以及填充在骨架和皮肤之间的第一等密度点阵,骨架为“局部壳体增厚+第二等密度点阵”的构型,皮肤为等厚度的薄壳体,将骨架和皮肤复合成一体,骨架和皮肤之间添加第一等密度点阵,其中骨架包括壳体、第一加强板、第二加强板以及填充在骨架内部空间的第二等密度点阵。本发明有效避免了机器人运动时塑料外观件因为机械连接产生的振动问题,节约了腿部件的装配时间,同时构型设计相对简单,在刚度满足使用要求的前提下有效降低腿部件的总重量,有助于增加大腿部件的使用寿命。
-
公开(公告)号:CN115743353A
公开(公告)日:2023-03-07
申请号:CN202211476614.8
申请日:2022-11-23
Applicant: 之江实验室
IPC: B62D57/032
Abstract: 一种轻质一体化双足机器人大腿结构,包括大髋部电机a、髋部电机b、膝部电机及大腿结构本体;大腿结构本体包括腿外壳、髋部电机a、髋部电机b以及膝部电机;大腿外壳的壳面采用轻量化的拓扑结构;大腿外壳的上部两侧相对设有一对安装孔a1,髋部电机a安装在安装孔a1上;大腿外壳的中部两侧相对设有一对安装孔b1,髋部电机b安装在安装孔b1上;大腿外壳的下部两侧相对设有一对安装孔c1,膝部电机安装在安装孔c1上;所述安装孔a1、安装孔b1、安装孔b1的孔壁采用轻量化的点阵结构。本发明融合拓扑优化+点阵填充两种轻量化设计手段,充分地挖掘出大腿结构的减重空间并采用激光选区熔化成型的工艺实现该类结构的制备。
-
公开(公告)号:CN114877884B
公开(公告)日:2022-11-25
申请号:CN202210429893.6
申请日:2022-04-22
Applicant: 之江实验室
Abstract: 本发明公开了一种用于无人机惯性导航组件隔振系统结构设计的优化设计方法,该方法通过建立一套系统级的结构优化设计框架体系,开展隔振器的布局优化设计和隔振器本体的结构优化设计,综合考虑了振动解耦率、振动能量传递率、静态稳定性、动态响应等多个性能指标,通过分步式优化设计求解,实现隔振系统的优化设计。本发明可以实现无人机惯性导航组件隔振系统在多个指标维度上的性能优化设计,同时大幅提升设计效率,具有很好的适应性,减少了开发成本。
-
公开(公告)号:CN113859520A
公开(公告)日:2021-12-31
申请号:CN202111078712.1
申请日:2021-09-15
Applicant: 之江实验室
Abstract: 本发明公开一种混联形式无人机自适应起落架,其包括上部承载平台、中间衔接平台以及位于两者之间的多个连杆组件;每个连杆组件均包括平台转动部件、上端连杆部件、下端连杆部件以及下端支撑部件;上部承载平台、上端连杆部件、下端连杆部件、下端支撑部件、中间衔接平台组成平面四连杆机构;起落架还包括压力传感器、视觉传感器以及惯性测量单元。本发明的混联形式自适应起落架采用广义并联机构形式,位置与姿态可以实现完全解耦调整,并且可以实现起落架的主动折叠,本发明的起落架具有较强的自适应能力,满足了无人机在多种复杂场景下的降落需求。
-
-
-
-
-
-
-
-
-