一种流向涡调制装置
    12.
    发明公开

    公开(公告)号:CN116534246A

    公开(公告)日:2023-08-04

    申请号:CN202310817344.0

    申请日:2023-07-05

    Abstract: 本发明涉及飞行器技术领域,公开了一种流向涡调制装置,应用于表面具有高超声速流体边界层的壁面,流向涡调制装置包括:设置在壁面上且凸出于壁面的三维粗糙元,用于延迟高超声速流体边界层的流向涡转捩;设置在壁面上且位于三维粗糙元背离来流方向一侧的控温组件,用于对壁面进行加热或降温。本申请中将壁面上设置凸出于壁面表面的三维粗糙元,并将壁面上三维粗糙元背离来流方向的一侧设置控温组件,可以在一定程度上使得被三维粗糙元进行调制后的流向涡结构内膜态更为稳定,由此更好得保证三维粗糙元实现流向涡转捩延迟有效性,有助于该流向涡调制装置应用于飞行器时,提升飞行器飞行的稳定性,提升飞行器的有效载荷。

    球锥类飞行器迎风区转捩的抑制方法、装置、设备及介质

    公开(公告)号:CN118833383B

    公开(公告)日:2024-11-26

    申请号:CN202411320941.3

    申请日:2024-09-23

    Abstract: 本申请公开了球锥类飞行器迎风区转捩的抑制方法、装置、设备及介质,涉及航空航天领域,包括:确定所述球锥类飞行器当前的主导模态;若当前所述主导模态为所述球锥类飞行器对应的第二模态,则基于所述第二模态确定所述球锥类飞行器对应的目标区域;利用预设温度调控组件基于预设温度调控规则调控所述目标区域的温度,以抑制球锥类飞行器迎风区的转捩;所述预设温度调控规则为控制所述目标区域中从重心到边缘的温度变化速率逐渐降低。通过在飞行器的迎风区构建具有几何中心温度变化快,外缘变化慢的特点的区域,在飞行器温度调控的过程中具有很好的抑制第二模态的控制效果,可以有效地抑制三维球锥边界层迎风区第二模态转捩,实现飞行器降热减阻。

    球锥类飞行器迎风区转捩的抑制方法、装置、设备及介质

    公开(公告)号:CN118833383A

    公开(公告)日:2024-10-25

    申请号:CN202411320941.3

    申请日:2024-09-23

    Abstract: 本申请公开了球锥类飞行器迎风区转捩的抑制方法、装置、设备及介质,涉及航空航天领域,包括:确定所述球锥类飞行器当前的主导模态;若当前所述主导模态为所述球锥类飞行器对应的第二模态,则基于所述第二模态确定所述球锥类飞行器对应的目标区域;利用预设温度调控组件基于预设温度调控规则调控所述目标区域的温度,以抑制球锥类飞行器迎风区的转捩;所述预设温度调控规则为控制所述目标区域中从重心到边缘的温度变化速率逐渐降低。通过在飞行器的迎风区构建具有几何中心温度变化快,外缘变化慢的特点的区域,在飞行器温度调控的过程中具有很好的抑制第二模态的控制效果,可以有效地抑制三维球锥边界层迎风区第二模态转捩,实现飞行器降热减阻。

    一种流向涡转捩控制方法、装置、设备及存储介质

    公开(公告)号:CN118811076A

    公开(公告)日:2024-10-22

    申请号:CN202411296087.1

    申请日:2024-09-18

    Abstract: 本申请公开了一种流向涡转捩控制方法、装置、设备及存储介质,涉及转捩控制技术领域,应用于飞行器,包括:基于飞行器的升力体模型以及当前状态的来流信息确定边界层中产生的当前流向涡;根据当前流向涡的位置,并结合预设气体引射位置选取原则在边界层上确定气体注入位置;基于预设关系表确定目标气体引射形式;利用目标气体引射形式在气体注入位置执行气体引射操作,以通过气体引射操作对当前流向涡的转捩过程进行控制。这样一来,本申请可以根据飞行器的飞行状态调整流向涡的转捩控制过程,在适当位置向流向涡边界层中注入气体工质,对边界层中的不稳定流向涡进行转捩控制;能够获得最大抑制转捩收益,实现飞行器降热减阻,提升气动性能。

    表面结构及贴附有该表面结构的高超声速飞行器

    公开(公告)号:CN114476029B

    公开(公告)日:2022-06-14

    申请号:CN202210360186.6

    申请日:2022-04-07

    Abstract: 本发明公开了一种表面结构及贴附有该表面结构的高超声速飞行器,该表面结构包括基板和烧蚀材料,基板的一面贴附于高超声速飞行器,另一面设有填充烧蚀材料的微腔。本发明通过在基板上设置用于填充烧蚀材料的微腔,并在相邻两个微腔之间的基板台设置用于生成第二模态波的反射波以及低速回流的凸起部,用以对高超声速飞行器进行高超声速飞行时产生的第二模态波的入射波进行抵消,同时传导第二模态波产生的能量,以及在烧蚀材料进行烧蚀时对第二模态波产生的热量进行吸收,能够实现高超声速飞行器表面结构的延迟转捩,提高高超声速飞行器防热、降热和减阻的能力。

Patent Agency Ranking