-
公开(公告)号:CN114021710A
公开(公告)日:2022-02-08
申请号:CN202111254887.3
申请日:2021-10-27
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提出一种利用比特级稀疏性的深度学习卷积加速方法和处理器,包括:获取待卷积的多组数据对,求和每组数据对中激活值和原始权重的指数,得到每一组数据对的指数和,并从所有数据对中选择数值最大的指数和作为最大指数;按计算顺序排列原始权重的尾数,形成权重矩阵,并将权重矩阵中各行统一对齐到最大指数,得到对齐矩阵;剔除对齐矩阵中的松弛位,得到精简矩阵,精简矩阵每一列的基本位按计算顺序递补空位,形成中间矩阵,剔除中间矩阵的空行后,将矩阵中空位置0,得到交错权重矩阵,将交错权重矩阵中每一行中权重段与对应激活值的尾数发送至加法树进行求和处理,通过对处理结果执行移位相加,得到输出特征图作为多组数据对的卷积结果。