-
公开(公告)号:CN111159990A
公开(公告)日:2020-05-15
申请号:CN201911244936.8
申请日:2019-12-06
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院计算技术研究所
IPC: G06F40/186 , G06F40/126 , G06F40/284 , G06F16/33 , G06F16/31
Abstract: 本发明提出一种基于模式拓展的通用特殊词识别方法及系统,提出了一种基于基础词的音形编码,常用汉字音节,常用汉字结构以及特殊字符映射节点来构建前缀树,通过比较字符编码相似度进行模糊匹配,完成新词提取的方法及系统。本发明可以应用于大量文本中特定词的发现提取,某些任务的数据集的提取生成,给定文本数据集的预处理等场景中,比如短信、微博等数据集的筛选以及纠正等文本预处理过程。本发明为下一步的文本分类任务提供了数据来源和基本标注,也对文本数据中新词的发现和纠正提供了帮助。
-
公开(公告)号:CN111078876A
公开(公告)日:2020-04-28
申请号:CN201911229492.0
申请日:2019-12-04
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院计算技术研究所
IPC: G06F16/35
Abstract: 本发明提出了一种基于多模型集成的短文本分类方法,包括:选取多个对短文本进行分类的分类模型;对训练样本进行采样,生成与该分类模型一一对应的训练集;通过对应的训练集对该分类模型进行训练,以获得对应的最终模型;通过所有该最终模型对目标文本进行分类,获取多个分类结果向量;集成所有该分类结果向量以得到最终结果向量,以该最终结果向量中具有最大值的元素所代表的类别,作为该目标文本的类别。
-