基于模板匹配的信息填涂卡识别方法

    公开(公告)号:CN101414356A

    公开(公告)日:2009-04-22

    申请号:CN200710175973.9

    申请日:2007-10-17

    Abstract: 本发明涉及基于模板匹配的信息填涂卡识别方法,利用空白信息卡建立模板图像信息,获得模板信息卡;设置模板信息卡涂点选项的有效填涂阈值;提取待识别模板信息卡涂点模板选项的背景模式定义,分别调用模板选项不同的背景模式进行涂点识别;若识别涂点结果大于等于设定的阈值,则认为该选项被有效填涂,否则是无效填涂;本发明能适用于不同类型灰度模式的识别,识别结果分级,灵活性高,能提高整体识别率;可批量识别,实现人机结合,更好地满足了实际应用的需要。本发明对所有选项区域进行定义,获得准确的模板信息。利用当前图像与模板图像之间的差异性进行识别,解决了纹理背景干扰的问题。

    基于二值图分段投影的文档表格线检测方法、系统

    公开(公告)号:CN110084117B

    公开(公告)日:2021-07-20

    申请号:CN201910223004.9

    申请日:2019-03-22

    Abstract: 本发明属于文本图像识别技术领域,具体涉及一种基于二值图分段投影的文档表格线检测方法、系统,旨在为了解决解决文档图像图像质量不稳定带来的表格线识别的准确度和鲁棒性不足的问题。本发明方法包括:输入图像的二值化处理;沿水平方向切分等宽等长的矩形子图,并计算各像素行投影值;获取各子图中表示表格线段的矩形框;基于所有子图,获取表格线候选路径;依据长度信息选择表格线候选路径对应的矩形框得到第一表格线集合,对第一图像旋转后经上述方法得到表格线,你旋转后得到第二表格线集合。本发明且不会受到具体表格类型的影响,具有较好的通用性,且对文档图像图像质量不稳定情况下进行表格线识别,提高了识别准确度和鲁棒性。

    多语言场景字符识别方法及识别系统

    公开(公告)号:CN106570521B

    公开(公告)日:2020-04-28

    申请号:CN201610924239.7

    申请日:2016-10-24

    Abstract: 本发明涉及一种多语言场景字符识别方法及识别系统。其中,该方法可以包括:确定场景字符图像中字符的语言类型;根据字符的语言类型,确定深度卷积神经网络模型;利用深度卷积神经网络模型,来提取场景字符图像的卷积层特征;基于卷积层特征,建立空间金字塔模型;利用高斯模型在空间金字塔模型上对每一空间区域进行高阶编码;将高阶编码后的结果拼接起来,作为场景字符描述子;利用分类器对场景字符描述子进行分类,以实现多语言场景字符的识别。本发明实施例对多语言的场景字符图像具有很好的识别效果,是一种通用的字符识别方法,对多语言场景文字识别具有良好的适应性。

    基于单字匹配的文档图像中文关键词检测方法、系统

    公开(公告)号:CN110059572A

    公开(公告)日:2019-07-26

    申请号:CN201910222318.7

    申请日:2019-03-22

    Abstract: 本发明属于文本图像识别技术领域,具体涉及一种基于单字匹配的文档图像中文关键词检测方法、系统,旨在解决解决文档图像图像质量不稳定及汉字排列多样性带来的中文关键词识别的准确度和鲁棒性不足的问题,本发明方法包括:对文档图像进行二值化处理得到第一图像;进行字符检测得到第一候选字符集合;对第一候选字符集合进行过滤得到第二候选字符集合、第一噪声候选字符集合;从第一噪声候选字符集合筛选字符并添加至第二候选字符集合,得到第三候选字符集合;进行候选字符组合得到第一候选词集合;进行丢失字符的二次检测得到第二候选词集合;基于代价函数,选择最终的关键词检测结果。本发明提高了文档关键词识别的准确度,具有高鲁棒性。

    一种基于域鲁棒卷积特征学习的交叉视角人脸识别方法

    公开(公告)号:CN104318215B

    公开(公告)日:2017-09-19

    申请号:CN201410583974.7

    申请日:2014-10-27

    Abstract: 本发明一种基于域鲁棒卷积特征学习的交叉视角人脸识别方法,包括步骤S1:从源域和目标域人脸集中采集多个人脸图像组成虚拟域人脸集;步骤S2:训练出源域、虚拟域和目标域的卷积深度神经网络;分别组成源域、目标域人脸集的人脸图像的卷积特征;步骤S3:建立源视角映射矩阵和目标视角映射矩阵,获得源域、目标域人脸集的人脸图像的卷积特征在映射空间中相应的源域、目标域新人脸特征值;步骤S4:优化源视角映射矩阵和目标视角映射矩阵;步骤S5:计算测试人脸图片的卷积特征并输入映射矩阵,得到并在一个新人脸特征值与多个新人脸特征之间的多个距离中选择最小距离对应的测试源视角人脸图像的身份作为测试目标视角人脸图像的身份。

    多语言场景字符识别方法及识别系统

    公开(公告)号:CN106570521A

    公开(公告)日:2017-04-19

    申请号:CN201610924239.7

    申请日:2016-10-24

    Abstract: 本发明涉及一种多语言场景字符识别方法及识别系统。其中,该方法可以包括:确定场景字符图像中字符的语言类型;根据字符的语言类型,确定深度卷积神经网络模型;利用深度卷积神经网络模型,来提取场景字符图像的卷积层特征;基于卷积层特征,建立空间金字塔模型;利用高斯模型在空间金字塔模型上对每一空间区域进行高阶编码;将高阶编码后的结果拼接起来,作为场景字符描述子;利用分类器对场景字符描述子进行分类,以实现多语言场景字符的识别。本发明实施例对多语言的场景字符图像具有很好的识别效果,是一种通用的字符识别方法,对多语言场景文字识别具有良好的适应性。

    一种基于鲁棒相对属性的行为识别方法

    公开(公告)号:CN103345623B

    公开(公告)日:2016-09-21

    申请号:CN201310290428.X

    申请日:2013-07-11

    Abstract: 本发明公开了一种基于鲁棒相对属性的行为识别方法。该方法包括以下步骤:提取视频样本库中每个动作视频样本的特征向量;设定对应于多种人体行为的多个人体运动属性,以及在每个人体运动属性下,每两个代表人体行为的动作视频,即动作视频对之间的关系;将所述动作视频对之间的关系作为输入,利用排序支持向量机进行训练,得到训练模型;利用梯度下降法求解所述排序支持向量机,得到所述排序支持向量机的参数向量,进而得到最优训练模型;利用得到的最优训练模型对每个待测试的动作视频进行人体行为识别,得到人体行为识别结果。实验证明,本发明方法能够提高人体行为识别的鲁棒性。

    一种多视角行为识别方法
    18.
    发明授权

    公开(公告)号:CN103226713B

    公开(公告)日:2016-04-13

    申请号:CN201310181275.5

    申请日:2013-05-16

    Abstract: 本发明公开了一种多视角行为识别方法。该方法包括以下步骤:对每个视角的动作视频样本提取其局部和全局特征,并把每个动作视频样本表示成为一个特征向量;对源视角和目标视角的动作视频样本的变换矩阵进行初始化;然后在信息论的框架下求得源视角和目标视角的动作视频样本的变换矩阵;根据两个视角的动作视频样本的变换矩阵求得虚拟视角核;然后求得每个动作视频样本之间的相似度;最后使用支持向量机分类器对测试动作视频进行分类。本发明通过连接在源视角和目标视角的连续通路达到多视角行为识别的目的;通过虚拟视角核计算得到的相似度矩阵能够作为任何基于核分类器的输入。

    一种基于结构化词典域转移的交叉视角人脸识别方法

    公开(公告)号:CN104318214A

    公开(公告)日:2015-01-28

    申请号:CN201410583963.9

    申请日:2014-10-27

    CPC classification number: G06K9/00221 G06K9/6269

    Abstract: 本发明是一种基于结构化词典域转移的交叉视角人脸识别方法,其包括步骤:S1:将训练出每个对样本类别有区分性的子词典串接构成结构化的源域词典;S2:学习目标域和多个中间域词典;S3:对源域及目标域的图像人脸编码、源域词典、目标域词典和多个中间域词典计算,得到并分别将源域及目标域人脸图像的源域重构图像、目标域重构图像和中间域重构图像串接组成源域人脸图像的域共享特征和目标域人脸图像的域共享特征;S4:根据源域人脸图像的域共享特征,对源域人脸集中的每一类样本训练一个支持向量机模型;将目标域人脸图像的域共享特征输入所有类别的支持向量机模型,取得分数最高的支持向量机模型对应的类别定义为目标域人脸图像的类别。

    一种基于多实例马尔科夫模型的行为识别方法

    公开(公告)号:CN103544503A

    公开(公告)日:2014-01-29

    申请号:CN201310566006.0

    申请日:2013-11-14

    Abstract: 本发明公开了一种基于多实例马尔科夫模型的行为识别方法。该方法包括以下步骤:对每个视频提取局部特征,用一个局部视频块的特征直方图来表示行为的某个局部运动;通过随机采样的方式得到许多局部视频块,这些局部视频块将形成多个马尔科夫链,这些马尔科夫链表示为某些局部运动在时间上的连续动作;在多实例学习的框架下,模型选择最具有判别性能的马尔科夫链表示行为;测试时,以同样的方式构成多个马尔科夫链表示视频,然后计算出这些马尔科夫链的分数,大于某个阈值为这种行为,反之不属于这种行为。本发明通过多实例马尔科夫模型,达到复杂场景下行为识别的目的,并可以减少对视频的标注。

Patent Agency Ranking