-
公开(公告)号:CN108304856A
公开(公告)日:2018-07-20
申请号:CN201711332985.8
申请日:2017-12-13
Applicant: 中国科学院自动化研究所
Abstract: 本发明涉及类脑智能和人工智能领域,具体涉及一种基于皮层丘脑计算模型的图像分类方法。旨在解决传统人工神经网络中浪费训练数据和训练神经网络过程中所需计算量较大的问题。本发明基于轮廓先验神经网络N1、融合丘脑调控作用的神经网络N2,分别对输入图像进行分类标记的预测,并按照预设的权值对两个预测结果进行融合得到所述输入图像的分类。本发明在小样本数据训练情况下利用MNIST数据集和FashionMNIST数据集进行图像分类测试,测试结果表明基于皮层丘脑计算模型的图像分类方法其性能均比传统的人工神经网络优异。
-
公开(公告)号:CN108197698A
公开(公告)日:2018-06-22
申请号:CN201711325022.5
申请日:2017-12-13
Applicant: 中国科学院自动化研究所
Abstract: 本发明属于认知神经技术领域,具体涉及一种基于多模态融合的多脑区协同自主决策方法。旨在解决现有无人机避障技术成本较高、不够机动灵活以及现有的强化学习方法要求控制对象具有强烈的容错能力的问题。本发明提供一种基于多模态融合的多脑区协同自主决策方法,包括获取障碍物的空间位置信息,将其输入预先构建的多脑区协同强化学习模型;根据环境反馈的奖励信息,通过多巴胺调控和突触可塑性机制,更新所述多脑区协同强化学习模型,实现无人机自主避障。本发明能够准确地评估场景中障碍物的危险程度,并且模拟人脑自主学习过程,让无人机快速准确地学习到避障策略,实现自主躲避障碍物,完成任务。
-
公开(公告)号:CN106815550A
公开(公告)日:2017-06-09
申请号:CN201611059266.9
申请日:2016-11-25
Applicant: 中国科学院自动化研究所
Abstract: 本发明涉及一种基于视觉恐惧反应脑机制的应急避障方法。其中,该方法包括获取图像序列;基于视网膜信息处理机制,检测图像序列中障碍物的运动方向和运动速度;基于障碍物的运动方向和运动速度,根据PV+神经元信息处理机制,进行逼近式运动检测,得到逼近式运动响应;基于逼近式运动响应,根据丘脑枕信息处理机制,确定最危险区域;对最危险的区域做出应急避障行为。通过上述技术方案,本发明实施例借鉴动物或者人类能够对危险对象产生快速防卫行为的能力,结合恐惧反应的脑机制,解决了如何提高应急反应能力的技术问题。
-
公开(公告)号:CN109919978B
公开(公告)日:2021-03-16
申请号:CN201910170679.1
申请日:2019-03-07
Applicant: 中国科学院自动化研究所
Abstract: 本发明提供一种受丘脑注意机制调控的多层视皮层信息融合的视觉跟踪方法及系统,所述视觉跟踪方法包括:从视频中的第一帧中获取待跟踪目标以及位置标签;基于预训练卷积神经网络模型,获取第一帧中待跟踪目标的不同卷积层的特征;根据位置标签,构建高斯标签;通过相关滤波得到各卷积层的模板;针对新的一帧,在前一帧的中心中裁剪出待搜索区域,利用相关滤波,以及各卷积层的模板,得到各卷积层的响应;利用空间注意机制以及时间注意机制动态调整其他层的响应的权重;根据调整后的其他层的权重,确定待跟踪目标的所在位置。本发明对于不同视皮层分配不同的权重,将不同层视觉特征去动态组合到一起,实现视觉跟踪性能的有效提升。
-
公开(公告)号:CN106651921B
公开(公告)日:2020-02-04
申请号:CN201611046531.X
申请日:2016-11-23
Applicant: 中国科学院自动化研究所
Abstract: 本发明涉及了运动检测方法及跟踪运动目标的方法。其中运动检测方法包括:获取图像序列;确定图像序列中运动目标在三维时空空间中不同三维时空方向对应的运动响应;对运动目标在所述三维时空空间中不同三维时空方向对应的运动响应进行投影,采用空间平面上最大化投影方法,得到运动目标的最大空间运动响应;基于运动目标的最大空间运动响应,采用所有空间方向上最大化空间运动响应的方法,得到运动目标的方位。本发明实施例通过采用上述技术方案解决了如何准确地对特定方向、特定速度的运动做出响应的技术问题,实现了整体的运动处理流程。
-
公开(公告)号:CN106708084B
公开(公告)日:2019-08-02
申请号:CN201611052401.7
申请日:2016-11-24
Applicant: 中国科学院自动化研究所
IPC: G05D1/10 , H04N13/128
Abstract: 本发明涉及一种复杂环境下无人机自动障碍物检测和避障方法,包括:利用无人机上设置的双目摄像头进行实时的图像采集,基于所采集的左、右两幅图像匹配计算生成视差图并进行预处理;基于视差图信息,对视差图进行轮廓和灰度值的聚类划分,得到具有清晰结构的区域块,将所述区域块的噪声干扰去除后得到潜在障碍物区域;对比前后两帧视差图中对应的潜在障碍物区域,结合障碍物的放大特性,依据无人机与潜在障碍物区域的距离和潜在障碍物区域的面积筛选得到最终障碍物区域;基于所得到的最终障碍物区域,输出无人机避障的动作指令。本发明在面对的复杂的存在多个隐含障碍物的环境下,具有优秀的障碍物检测和避障能力。
-
公开(公告)号:CN109919978A
公开(公告)日:2019-06-21
申请号:CN201910170679.1
申请日:2019-03-07
Applicant: 中国科学院自动化研究所
Abstract: 本发明提供一种受丘脑注意机制调控的多层视皮层信息融合的视觉跟踪方法及系统,所述视觉跟踪方法包括:从视频中的第一帧中获取待跟踪目标以及位置标签;基于预训练卷积神经网络模型,获取第一帧中待跟踪目标的不同卷积层的特征;根据位置标签,构建高斯标签;通过相关滤波得到各卷积层的模板;针对新的一帧,在前一帧的中心中裁剪出待搜索区域,利用相关滤波,以及各卷积层的模板,得到各卷积层的响应;利用空间注意机制以及时间注意机制动态调整其他层的响应的权重;根据调整后的其他层的权重,确定待跟踪目标的所在位置。本发明对于不同视皮层分配不同的权重,将不同层视觉特征去动态组合到一起,实现视觉跟踪性能的有效提升。
-
公开(公告)号:CN109657036A
公开(公告)日:2019-04-19
申请号:CN201811471835.X
申请日:2018-12-04
Applicant: 中国科学院自动化研究所
IPC: G06F16/33 , G06F16/332 , G06F16/36 , G06N5/04
CPC classification number: G06N5/04
Abstract: 本发明属于认知神经科学领域,具体涉及一种基于类脑语义层次时序记忆推理模型的问答方法、系统,旨在解决文本生成、自动问答等自然语言理解任务的小样本学习问题。本发明方法包括:获取问题文本和回答文本并输入;对文本时序池化得到词向量矩阵;将词向量矩阵中每个词向量空间和时间池化,得到词向量对应的每一位为0或1的二值词表示集;将文本和词集进行类脑学习,得到优化后的模型;将问题文本单独输入,基于模型中的细胞预测状态进行词的规约,得到回答文本并输出。本发明结合语义层次时序记忆模型,基于小样本数据,知识推理的学习方式进行模型的构建,对样本的数量要求低,没有大量参数需要调节,增加了模型的可拓展性。
-
公开(公告)号:CN105224630B
公开(公告)日:2019-01-29
申请号:CN201510616011.7
申请日:2015-09-24
Applicant: 中国科学院自动化研究所
IPC: G06F16/36
Abstract: 本发明提供的基于语义网本体数据的集成方法,包括:获取数据信息,并对所述数据信息进行处理得到本体格式的数据信息;将所述本体格式的数据信息通过渐进式消歧算法进行数据整合得到不同数据源的相同实体之间的链接关系;通过自动化挖掘获取关键信息,所述关键信息包括摘要信息和标题信息;根据所述摘要信息和所述标题信息构建关联图谱;根据所述关联图谱推理出潜在关联信息并扩充所述关联图谱;将不同数据源的数据信息、所述相同实体之间的链接关系和所述关联图谱构建为知识数据库。本发明可以在不同数据之间建立语义链接,对不同资源进行整合和推理。
-
公开(公告)号:CN106708084A
公开(公告)日:2017-05-24
申请号:CN201611052401.7
申请日:2016-11-24
Applicant: 中国科学院自动化研究所
CPC classification number: G05D1/101 , H04N13/128 , H04N13/327
Abstract: 本发明涉及一种复杂环境下无人机自动障碍物检测和避障方法,包括:利用无人机上设置的双目摄像头进行实时的图像采集,基于所采集的左、右两幅图像匹配计算生成视差图并进行预处理;基于视差图信息,对视差图进行轮廓和灰度值的聚类划分,得到具有清晰结构的区域块,将所述区域块的噪声干扰去除后得到潜在障碍物区域;对比前后两帧视差图中对应的潜在障碍物区域,结合障碍物的放大特性,依据无人机与潜在障碍物区域的距离和潜在障碍物区域的面积筛选得到最终障碍物区域;基于所得到的最终障碍物区域,输出无人机避障的动作指令。本发明在面对的复杂的存在多个隐含障碍物的环境下,具有优秀的障碍物检测和避障能力。
-
-
-
-
-
-
-
-
-