-
公开(公告)号:CN118760745A
公开(公告)日:2024-10-11
申请号:CN202410736214.9
申请日:2024-06-07
Applicant: 中国科学院信息工程研究所
Abstract: 本发明公开了一种面向知识图谱复杂逻辑推理的生成式方法。本发明包括查询转换模块和扩散推理模块,逻辑查询转换模块将一阶逻辑查询转换为输入序列,扩散推理模块展示了前向和后向的双向生成过程,并设计了一个结构增强自注意力机制的变换器。查询转换模块将符号化的一阶逻辑查询转换为自然语言输入序列,扩散推理模块通过前向过程和后向过程的多步生成过程来捕捉复杂逻辑查询的复合分布;同时,在扩散模型的转换器中设计了一个结构增强的自注意力机制,以有效地融合知识图谱中重要的结构特征。本发明通过对扩散中间过程的多粒度控制进一步保证了模型的可控性和可解释性;相较于其他基线方法实现了更好的知识图谱推理结果。
-
公开(公告)号:CN118503775A
公开(公告)日:2024-08-16
申请号:CN202410499002.3
申请日:2024-04-24
Applicant: 中国科学院信息工程研究所
IPC: G06F18/241 , G06N3/042 , G06N3/082
Abstract: 本发明公开了基于属性图表示的用户网络节点或边的分类方法及系统,属于图数据处理领域,针对用户网络的属性信息构建属性图,计算所有邻居节点的属性信息和拓扑信息对目标节点的全局表示产生的影响;再将这两种影响与目标节点的全局表示进行融合,迭代得到目标节点最终的低维表示;输入到多层感知器中进行分类预测。本发明能够解决现有基于图神经网络的属性图表示学习方法中存在的属性扰动、过平滑问题以及属性、拓扑信息影响差异未被充分建模等问题,以及这些问题对最终分类预测造成的不良影响。
-
公开(公告)号:CN117909438B
公开(公告)日:2025-05-09
申请号:CN202410024769.0
申请日:2024-01-08
Applicant: 中国科学院信息工程研究所
IPC: G06F16/31 , G06F16/334 , G06F40/30 , G06N3/0455
Abstract: 本发明公开了一种文档的篇章级事件论元抽取方法、系统及介质,属于文本信息抽取领域,针对上下文一致性检索、模式一致性检索和自适应混合检索这三种检索方式,通过构建基于T5模型的检索增强生成模型,执行对应的检索增强策略,可以回忆起有助于演示模型应该如何解决任务的样例。其中,本发通过自适应混合检索增强范式来生成参考向量作为深度线索,能够提高模型的类比能力。
-
公开(公告)号:CN118760772A
公开(公告)日:2024-10-11
申请号:CN202410736212.X
申请日:2024-06-07
Applicant: 中国科学院信息工程研究所
Abstract: 本发明公开了一种基于多视图蒸馏增强的实体链接方法。本方法包括:1)多视图实体表征:将每个实体原本篇章级的文本描述分成多个句子级的视图,对每一视图独立地经过语言模型进行编码,得到每一句子视图对应的向量表征;从中选择一个和提及最相关的视图的向量表征作为实体的向量表征,以避免与提及无关的信息被引入到实体表征中;2)多视图蒸馏增强:在引入了细粒度的视图表征后,通过交叉对齐和自对齐机制,分别在原始的实体层次以及细粒度的视图层次两个维度上对齐学生模型和教师模型间的相关性分数分布,从而促进教师模型到学生模型的细粒度知识蒸馏。本发明促进了实体链接系统的整体性能的提升。
-
公开(公告)号:CN118709688A
公开(公告)日:2024-09-27
申请号:CN202410746400.0
申请日:2024-06-11
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
IPC: G06F40/295 , G06F40/242 , G06N5/04 , G06N3/0455 , G06N3/0499 , G06N3/082
Abstract: 本发明公开一种基于问答机制的文本变体词识别方法、装置及设备,属于文本信息识别领域。所述方法包括:构建变体词库,并通过汉字的字形和拼音的分别编码对所述变体词库进行数据增强;在数据增强后的变体词库上训练一变体词推理模型,所述变体词推理模型的网络结构包括:一语言表征模型和两个独立的全连接层;将问答模板与文本内容相连接后输入所述变体词推理模型,得到文本内容中变体词的起始位置概率和结束位置概率;基于变体词的起始位置概率和结束位置概率确定变体词的确切边界,得到文本内容中变体词的识别结果。本发明不仅能够提高变体词识别的准确性,还能够有效地降低模型的维护成本,增强其在实际应用中的适应性和鲁棒性。
-
公开(公告)号:CN118708728A
公开(公告)日:2024-09-27
申请号:CN202410746389.8
申请日:2024-06-11
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
IPC: G06F16/36 , G06F16/33 , G06N5/04 , G06N3/0455 , G06N3/08
Abstract: 本发明公开了一种基于难度序列推理的篇章级事件论元抽取方法及系统,属于文本信息抽取领域。本发明根据文档上下文选择对应的提示学习模板,对上下文和提示学习模板进行编码,得到上下文表示和提示表示,该提示表示包含论元角色的向量表示;根据每个论元角色的向量表示计算每个论元角色的预测困难分数,根据预测困难份数对论元角色进行排序,得到预测的推理路径;按照预测的推理路径的顺序进行信息推理,得到每个论元角色的推理概率分布;根据得到的每个论元角色的推理概率分布,预测每个论元角色的位置并抽取论元。本发明能够利用简单论元的信息来帮助抽取困难的论元。
-
公开(公告)号:CN115114427A
公开(公告)日:2022-09-27
申请号:CN202210279929.7
申请日:2022-03-21
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
Abstract: 本发明公开一种基于预训练和多任务学习的文本摘要和关键词抽取方法,属于文本信息抽取领域,基于预训练语言模型在抽取任务上进行针对性的进一步微调,并在关键词抽取任务与摘要抽取任务的协作下用于抽取关键词和摘要。本发明能够解决现有文本关键词抽取和摘要抽取技术存在的准确率和召回率低的问题。
-
公开(公告)号:CN114021627A
公开(公告)日:2022-02-08
申请号:CN202111239649.5
申请日:2021-10-25
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
Abstract: 本发明公开了一种融合LSTM与场景规则知识的异常轨迹检测方法及装置,包括依据目标轨迹构建时序序列;将时序序列输入LSTM网络,获取的目标轨迹中每个时刻的位置隐向量,并基于各位置隐向量进行注意力机制计算,得到目标轨迹表示向量;拼接目标轨迹表示向量与设定场景规则的向量,并对拼接后向量进行分类,得到异常轨迹检测结果。本发明采用的融合方法除了使用向量表示轨迹之外,还加入了可调整的应用场景规则,解决单一方法的不足,具有更好的迁移性。
-
公开(公告)号:CN118760772B
公开(公告)日:2025-04-01
申请号:CN202410736212.X
申请日:2024-06-07
Applicant: 中国科学院信息工程研究所
Abstract: 本发明公开了一种基于多视图蒸馏增强的实体链接方法。本方法包括:1)多视图实体表征:将每个实体原本篇章级的文本描述分成多个句子级的视图,对每一视图独立地经过语言模型进行编码,得到每一句子视图对应的向量表征;从中选择一个和提及最相关的视图的向量表征作为实体的向量表征,以避免与提及无关的信息被引入到实体表征中;2)多视图蒸馏增强:在引入了细粒度的视图表征后,通过交叉对齐和自对齐机制,分别在原始的实体层次以及细粒度的视图层次两个维度上对齐学生模型和教师模型间的相关性分数分布,从而促进教师模型到学生模型的细粒度知识蒸馏。本发明促进了实体链接系统的整体性能的提升。
-
公开(公告)号:CN118332101A
公开(公告)日:2024-07-12
申请号:CN202410400400.5
申请日:2024-04-03
Applicant: 中国科学院信息工程研究所
IPC: G06F16/34 , G06F40/30 , G06N3/0442 , G06N3/08 , G06F16/35
Abstract: 本发明属于文本信息抽取领域,涉及一种基于分层迭代的长文本抽取式摘要生成方法和装置。该方法包括:获取文本中字符的词向量、位置向量以及结构子标题向量,将其相加作为语义编码的输入,采用长文本预训练语言模型作为语义编码器,进行语义编码;将语义编码之后的向量送入各个层级编码器中,将语义信息沿着文本结构路线由句子层级至文档层级进行分层传递,然后从文档层级至句子层级再次进行分层传递,实现迭代更新,得到各个层级的隐层表示;通过融合各个层级的隐层表示全面地对每个句子进行评价,选出最优的摘要句。本发明能够克服现有抽取式摘要面向长文本时计算资源消耗大,存在语义损失以及长文本结构建模缺失的问题。
-
-
-
-
-
-
-
-
-