-
公开(公告)号:CN117745959A
公开(公告)日:2024-03-22
申请号:CN202311214770.1
申请日:2023-09-20
Abstract: 一种基于PSO‑DBN模型的植被山区SRTM DEM校正方法,包括以下步骤:1)对获取的原始数据进行预处理;2)使用DBN网络结构对原始数据进行训练;在训练过程中使用PSO优化DBN的超参数,得到PSO‑DBN模型算法;3)使用PSO‑DBN模型算法校正预设林区的SRTM DEM。经本发明的基于PSO‑DBN模型的植被山区SRTM DEM校正方法校正之后,SRTM DEM平均误差和均方根误差能够分别下降了93.5%‑96.0%和21.5%‑23.5%,地形复杂区的精度提升超过了26.1%。
-
公开(公告)号:CN111812600B
公开(公告)日:2023-09-08
申请号:CN202010607023.4
申请日:2020-06-29
Applicant: 中南林业科技大学
Abstract: 一种自适应地形相关的SRTM‑DEM校正方法,包括以下步骤:1)构建与地理位置相关的线性模型来对全球趋势误差进行建模,即ftrend(E,N)=a0+a1sinE+a2cos(90°‑N) (1);2)基于BIC的局部地形误差校正模型的构建将与地形有关的误差fterrain构造为fterrain(S,A,Z)=a3H+fTF(S,A) (2);3)构建自适应地形相关的SRTMDEM校正模型ΔH=ftrend(E,N)+fterrain(S,A,H)+Δh+δ (4);4)利用模型参数的稳健估计值。相对于传统的SHM和MLE校正方法,本发明的校正方法的精度更高。
-
公开(公告)号:CN111812600A
公开(公告)日:2020-10-23
申请号:CN202010607023.4
申请日:2020-06-29
Applicant: 中南林业科技大学
Abstract: 一种自适应地形相关的SRTM-DEM校正方法,包括以下步骤:1)构建与地理位置相关的线性模型来对全球趋势误差进行建模,即ftrend(E,N)=a0+a1sinE+a2cos(90°-N)(1);2)基于BIC的局部地形误差校正模型的构建将与地形有关的误差fterrain构造为fterrain(S,A,Z)=a3H+fTF(S,A)(2);3)构建自适应地形相关的SRTMDEM校正模型ΔH=ftrend(E,N)+fterrain(S,A,H)+Δh+δ(4);4)利用模型参数的稳健估计值。相对于传统的SHM和MLE校正方法,本发明的校正方法的精度更高。
-
-