应用于AIOps故障预警的动态阈值预测方法、设备及介质

    公开(公告)号:CN113886181B

    公开(公告)日:2022-10-14

    申请号:CN202111165179.2

    申请日:2021-09-30

    Applicant: 中南大学

    Inventor: 陈志刚 谭源 王堃

    Abstract: 本公开实施例中提供了一种应用于AIOps故障预警的动态阈值预测方法、设备及介质,属于数据处理技术领域,具体包括:获取待测设备在预设时段内的历史流量数据,并对历史流量数据进行预处理,得到目标数据集;根据目标数据集进行拓扑数据分析,提取拓扑特征,以及,将目标数据集输入卷积神经网络,提取时空特征;将拓扑特征、时空特征和统计特征联结,训练门控循环单元网络,得到预测结果;将预测结果和均值代入预设公式,计算待测设备在指定置信度下的预测阈值区间。通过本公开的方案,将拓扑特征、时空特征和统计特征联结训练得到动态的预测阈值区间,提高了AIOps故障预警的动态阈值预测的预测效率、预测精准度和适应性。

    基于Phik特征选择的电网主机负载预测方法、设备及介质

    公开(公告)号:CN113610174A

    公开(公告)日:2021-11-05

    申请号:CN202110931677.7

    申请日:2021-08-13

    Abstract: 本公开实施例中提供了一基于Phik特征选择的电网主机负载预测方法、设备及介质,属于电学技术领域,具体包括:提取目标电网主机对应的历史数据,并将历史数据分为训练集和测试集;利用Person相关系数法对训练集的初始特征进行Person相关性分析得到多个时序分量,并选取与标签值均值相关性符合预设条件的时序分量作为第一特征集;根据Phik相关系数法对训练集中预测变量与辅变量之间的相关性,生成第二特征集;分别将第一特征集和第二特征集各输入一个GRU模型,然后将两个GRU模型的输出值输入特征融合层,得到目标电网主机对应的预测模型;根据预测模型和测试集,得到目标电网主机对应的负载预测区间。通过本公开的方案,提高了运行效率、适应性和预测精度。

    基于离散小波变换和FA-ELM的网络流量预测方法

    公开(公告)号:CN113411216B

    公开(公告)日:2022-11-04

    申请号:CN202110687331.7

    申请日:2021-06-21

    Abstract: 本发明提供了一种基于离散小波变换和FA‑ELM的网络流量预测方法,包括:步骤1,构建DWAFE模型,在所述DWAFE模型中设置数据管理员和模型管理员;步骤2,获取多个网络流量数据并将所述网络流量数据发送给所述数据管理员,所述数据管理员将所述网络流量数据进行数据预处理,得到数据预处理后的所述网络流量数据。本发明经过萤火虫算法优化的FA‑ELM模型,克服了ELM稳定性差的缺陷,对非线性数据预测的准确性高,能稳定可靠地应用于各领域的研究中,具有极大的现实意义。本发明提出的DWAFE模型结合了ARIMA模型和FA‑ELM模型各自的优势,做出精准的网络流量预测,根据预测结果计算出指定置信度下的动态阈值区间,从而实现设备运行状态实时感知,为设备故障预警提供强有力的支持。

Patent Agency Ranking