-
公开(公告)号:CN115293520A
公开(公告)日:2022-11-04
申请号:CN202210828733.9
申请日:2022-07-15
Applicant: 中南大学
Abstract: 本发明提供一种结构化的多模态工业过程指标估计框架的构建方法,涉及工业估计技术领域。该方法由四部分组成:显式结构表示、复杂的工业机理知识、多模态聚类方法和结构化可解释动态图网络。首先利用图结构对多传感器时间序列数据进行建模。其次设计了一种多模式聚类方法,该方法基于高斯混合模型来划分和定位工业多模式运行数据。随后开发了一种结构化可解释动态图网络估计模型,以提高工业图数据的节点预测性能和解释能力。此外,该模型可以实时计算每个单独的过程变量对关键指标的贡献,从而为优化控制提供指导。将上述方法进行在线部署能够对在线数据进行实时模态识别,然后切换模态对应的动态图网络,实现对工业过程关键指标的准确估计。