-
公开(公告)号:CN109920050A
公开(公告)日:2019-06-21
申请号:CN201910153854.6
申请日:2019-03-01
Applicant: 中北大学
Abstract: 本发明具体涉及一种基于深度学习和薄板样条的单视图三维火焰重建方法,解决了现有的三维火焰重建过程中需要多视角图像完成物体深度信息的估计和计算,人力财力成本高等问题。首先,通过深度学习的方法在已有数据集中寻找检索与输入火焰最为相似的三维火焰模型;然后,与三维火焰模型的多角度投影视图进行对比得到最佳投影视图;最后,在三维薄板样条变形的方法对三维火焰模型进行处理,实现三维火焰模型的重建。该方法适用于基于单幅火焰图像或者单视角火焰图像的三维重建。本发明是一种相对稳定和比较准确的三维模型检索方法;与轮廓为基础构建控制盒来驱动变形相比,在选定相同的控制点时,本发明的时间复杂度更低。