一种钾磷共掺杂型石墨相氮化碳及其制备方法

    公开(公告)号:CN118454714A

    公开(公告)日:2024-08-09

    申请号:CN202410408197.6

    申请日:2024-04-07

    Applicant: 东南大学

    Abstract: 本发明公开了一种钾磷共掺杂型石墨相氮化碳材料及其制备方法,制备方法包括以下步骤:步骤一,将三聚氰胺和磷酸二氢钾混合研磨,得到混合粉末;步骤二,将混合粉末放入带盖子的小坩埚里,再将小坩埚放入盛有微波吸收剂的大坩埚里,对大坩埚进行微波加热,得到反应物;步骤三,将反应物清洗后烘干,得到钾磷共掺杂型石墨相氮化碳材料。本发明所得钾磷共掺杂型石墨相氮化碳材料,表现出增强的光吸收性能,光吸收范围拓宽至近红外光区,这归因于K、P元素掺入时引入了亚带隙,从而使得g‑C3N4能够吸收能量低于其本征带隙的光子,使更多的光生载流子参与到反应中,有效促进光催化氧还原反应;制备方法简单且易于操作,节能高效同时成本也较低。

    一种双空位石墨相氮化碳光催化剂及其制备方法

    公开(公告)号:CN113908872A

    公开(公告)日:2022-01-11

    申请号:CN202111092273.X

    申请日:2021-09-17

    Applicant: 东南大学

    Abstract: 本发明公开了一种双空位石墨相氮化碳光催化剂及其制备方法,以三聚氰胺‑三聚氰酸氢键自组装超分子为前驱体,通过高温热聚合反应得到,包括以下步骤:首先将三聚氰胺和三聚氰酸分别溶于热水中,形成溶液;再将溶液混合搅拌得到白色悬浊液,冷却后进行水热反应;水热反应完成后通过离心洗涤与干燥获得白色的超分子粉末;再将该粉末置于管式炉中,在H2氛围中进行高温热聚合反应,得到含有碳、氮双空位的石墨相氮化碳光催化剂。该制备方法工艺简单,成本低,有利于工业化生产;所制备的石墨相氮化碳光催化剂具有增强的光吸收能力和光生载流子分离效率,在光催化合成过氧化氢和降解有机染料等领域有着广阔的应用前景。

    一种制备Zn离子掺杂Fe3O4空心球-石墨烯电极材料的方法

    公开(公告)号:CN110379636A

    公开(公告)日:2019-10-25

    申请号:CN201910489566.8

    申请日:2019-06-06

    Applicant: 东南大学

    Abstract: 本发明的一种制备Zn离子掺杂Fe3O4空心球/石墨烯电极材料的方法包括以下工艺步骤:步骤一.称取GO粉体,加入到乙二醇溶剂中,超声处理至完全分散得到混合溶液A;步骤二.向上述步骤一得到的GO-乙二醇混合溶液A中加入FeCl3·6H2O,磁力搅拌至完全溶解,后加入ZnCl2,磁力搅拌至完全溶解,得到混合溶液B;步骤三.向上述步骤二得到的混合溶液B中缓慢滴加乙醇胺试剂,继续磁力搅拌后,将所得混合溶液置于50mL反应釜中,于高温下反应;步骤四.利用强磁铁分离粉体,最后在50℃-70℃下真空干燥,得到最终产物-Zn离子掺杂Fe3O4空心球-石墨烯电极材料。该工艺流程简单易操作,安全性高,适于大规模生产。具有优异的电化学储能性能,在超级电容器领域具有潜在应用。

    一种钾氧共掺杂石墨相氮化碳光催化剂的制备方法

    公开(公告)号:CN115007182B

    公开(公告)日:2024-03-01

    申请号:CN202210414655.8

    申请日:2022-04-20

    Applicant: 东南大学

    Abstract: 本发明公开了一种钾氧共掺杂石墨相氮化碳光催化剂的制备方法,该方法包括以下步骤:A、B,将溶液A、B混合得到白色沉淀,为超分子粉末,与氯化钾粉末混合得到混合粉末A;(2)将混合粉末A放入容器A内,将容器A放入容器B内,并向容器B内加入吸波介质,进行微波加热,得到钾掺杂石墨相氮化碳材料;(3)将钾掺杂石墨相氮化碳材料与草酸混合,得到混合粉末B,然后按照步骤(2)的方法进行微波加热,制得。本发明的二次微波法大幅提升了材料的比表面积,避免氯化钾的掺入对氮化碳比表面积的不利影响,显著提高了光催化活性;合成周期短,易于操作,可用于光催化产过氧化氢。(1)将三聚氰胺和三聚氰酸分别溶解后得到溶液

    等离子体诱导多级非晶氮化碳的制法及所得氮化碳与应用

    公开(公告)号:CN114348977A

    公开(公告)日:2022-04-15

    申请号:CN202111601951.0

    申请日:2021-12-24

    Applicant: 东南大学

    Abstract: 本发明公开了等离子体诱导多级非晶氮化碳的制法及所得氮化碳与应用,制备方法为先在低温条件下,将三聚氰胺和三聚氰酸溶解在浓硫酸,再加入高锰酸钾进行氧化处理得到褐色胶体;将褐色液体先中温反应,再高温反应,待其冷却至室温,逐滴加入过氧化氢,得到前驱体沉淀物;将得沉淀物充分洗涤、干燥,并进行氢气等离子体处理,制备得到多级非晶氮化碳。本发明工艺流程简单易操作,通过氢气等离子体处理,得到由纳米片组成的三维纳米网络状的非晶氮化碳。该材料结构稳定,光电化学性能好,在光催化产过氧化氢、二氧化碳还原以及光催化降解污染物有着广阔的应用前景。

    一种制备Zn离子掺杂Fe3O4空心球-石墨烯电极材料的方法

    公开(公告)号:CN110379636B

    公开(公告)日:2021-05-11

    申请号:CN201910489566.8

    申请日:2019-06-06

    Applicant: 东南大学

    Abstract: 本发明的一种制备Zn离子掺杂Fe3O4空心球/石墨烯电极材料的方法包括以下工艺步骤:步骤一.称取GO粉体,加入到乙二醇溶剂中,超声处理至完全分散得到混合溶液A;步骤二.向上述步骤一得到的GO‑乙二醇混合溶液A中加入FeCl3·6H2O,磁力搅拌至完全溶解,后加入ZnCl2,磁力搅拌至完全溶解,得到混合溶液B;步骤三.向上述步骤二得到的混合溶液B中缓慢滴加乙醇胺试剂,继续磁力搅拌后,将所得混合溶液置于50mL反应釜中,于高温下反应;步骤四.利用强磁铁分离粉体,最后在50℃‑70℃下真空干燥,得到最终产物‑Zn离子掺杂Fe3O4空心球‑石墨烯电极材料。该工艺流程简单易操作,安全性高,适于大规模生产。具有优异的电化学储能性能,在超级电容器领域具有潜在应用。

    一种高性能镍-钴硒化物/三维石墨烯/泡沫镍无粘结剂电极材料的制备方法

    公开(公告)号:CN109524245B

    公开(公告)日:2020-09-18

    申请号:CN201811381555.X

    申请日:2018-11-20

    Applicant: 东南大学

    Abstract: 本发明公开了一种高性能镍‑钴硒化物/三维石墨烯/泡沫镍无粘结剂电极材料的制备方法,包括以下步骤:首先以CH4作为碳源,通过CVD技术制备生长有三维石墨烯的泡沫镍;再将制备好的三维石墨烯的泡沫镍浸入溶液中,通过第一次水热反应;将沉淀物收集并多次洗涤,加入硒粉和NaOH后进行第二次水热反应,最后清洗样品并在真空环境中进行干燥。通过简单的CVD方法,在泡沫镍上原位生长了一层三维石墨烯,随后在未添加其他改性剂或活化剂的情况下,通过两次水热反应,在三维石墨烯/泡沫镍上直接生长镍‑钴硒化物,制备得到了一种无粘结剂、稳定、电化学性能优异的新型电极材料,在能源领域以及其它电子器件领域有着广阔的应用前景。

    一种CN/Mn2O3/FTOp-n异质结材料的制备方法及其产品和应用

    公开(公告)号:CN115475632B

    公开(公告)日:2024-04-05

    申请号:CN202211108180.6

    申请日:2022-09-13

    Applicant: 东南大学

    Abstract: 本发明公开了一种CN/Mn2O3/FTOp‑n异质结材料的制备方法及其产品和应用。该CN/Mn2O3/FTOp‑n异质结材料是在冰浴条件下,将三聚氰胺和三聚氰酸溶解于浓硫酸中,加入高锰酸钾,搅拌反应,得到混合胶体;再将混合胶体加热反应后,滴加过氧化氢,离心,干燥,得到三聚氰胺‑三聚氰酸超分子前驱体(MCS);最后将三聚氰胺‑三聚氰酸超分子前驱体涂覆到FTO玻璃上,进行氢气等离子体处理得到。本发明的异质结可作为光电极用于水分解、太阳能电池、H2O2生产等光催化反应,具有结构稳定,光电和循环性能优异等特点,可有效解决传统粉末光催化剂难以回收利用的问题。

    一种双空位石墨相氮化碳光催化剂及其制备方法

    公开(公告)号:CN113908872B

    公开(公告)日:2023-02-28

    申请号:CN202111092273.X

    申请日:2021-09-17

    Applicant: 东南大学

    Abstract: 本发明公开了一种双空位石墨相氮化碳光催化剂及其制备方法,以三聚氰胺‑三聚氰酸氢键自组装超分子为前驱体,通过高温热聚合反应得到,包括以下步骤:首先将三聚氰胺和三聚氰酸分别溶于热水中,形成溶液;再将溶液混合搅拌得到白色悬浊液,冷却后进行水热反应;水热反应完成后通过离心洗涤与干燥获得白色的超分子粉末;再将该粉末置于管式炉中,在H2氛围中进行高温热聚合反应,得到含有碳、氮双空位的石墨相氮化碳光催化剂。该制备方法工艺简单,成本低,有利于工业化生产;所制备的石墨相氮化碳光催化剂具有增强的光吸收能力和光生载流子分离效率,在光催化合成过氧化氢和降解有机染料等领域有着广阔的应用前景。

Patent Agency Ranking