-
公开(公告)号:CN110435239B
公开(公告)日:2021-11-09
申请号:CN201910573967.1
申请日:2019-06-28
Applicant: 东华大学
IPC: B32B9/00 , B32B9/04 , B32B27/04 , B32B27/12 , B32B27/20 , B32B27/28 , B32B37/02 , B32B37/24 , B32B38/18 , B32B38/00 , D06M11/74 , D06M15/61 , D06M15/55 , D06M13/127 , D06M11/65
Abstract: 本发明涉及一种多尺度增韧环氧树脂基碳纤维复合材料及其制备方法,聚醚酰亚胺PEI纳米纤维膜铺放在上浆后碳纳米纤维层间,灌注环氧树脂,即得。本发明利用热塑性树脂聚醚酰亚胺增强增韧环氧树脂的同时,利用石墨烯,碳纳米管对增韧后树脂基体进行界面改性,改善碳纤维与树脂基体的界面结合,实现对于复合材料纳米‑亚微米两个尺度的增韧。
-
公开(公告)号:CN104792679B
公开(公告)日:2017-10-27
申请号:CN201510163050.6
申请日:2015-04-08
Applicant: 东华大学
Abstract: 本发明涉及一种中空微球复合材料孔隙率检测标块的制备方法,属于复合材料无损检测与超声评估技术。所述孔隙率检测标块是将不同内外径、不同壁厚、不同材料的中空微球预埋进复合材料中,以中空微球的中空作为复合材料的孔隙,模拟复合材料孔隙缺陷,这样就达到已知复合材料孔隙的目的,按照不同的基体,不同的增强材料,选择不同的铺层方式,通过树脂传递模塑成型制备复合材料孔隙率标块,以满足实际检测中多样化的需求;用超声技术对复合材料标块进行扫描,验证试块孔隙率分布的均匀性、孔隙率的相对大小,再与真实孔隙缺陷的超声衰减信号进行对比分析,结合已知复合材料的孔隙,为复合材料孔隙率超声检测提供一种真实有效的比对与评价基准。
-
公开(公告)号:CN104792678A
公开(公告)日:2015-07-22
申请号:CN201510163049.3
申请日:2015-04-08
Applicant: 东华大学
Abstract: 本发明涉及一种真空辅助成型中空微球复合材料孔隙率检测标块的制备方法,所述的孔隙率检测标块是将不同内外径、不同壁厚、不同材料的中空微球预埋进复合材料中,以中空微球的中空作为复合材料的孔隙,模拟复合材料孔隙缺陷,这样就达到已知复合材料孔隙的目的,按照不同的基体,不同的增强材料,选择不同的铺层方式,通过真空辅助成型制备复合材料孔隙率标块,以满足实际检测中多样化的需求;用超声技术对复合材料标块进行扫描,验证试块孔隙率分布的均匀性、孔隙率的相对大小,再与真实孔隙缺陷的超声衰减信号进行对比分析,结合已知复合材料的孔隙,为复合材料孔隙率超声检测提供一种真实有效的比对与评价基准。
-
公开(公告)号:CN104833728B
公开(公告)日:2018-07-17
申请号:CN201510162066.5
申请日:2015-04-08
Applicant: 东华大学
IPC: G01N29/30
Abstract: 本发明涉及一种复合材料孔隙率检测标块及其制备方法,所述的孔隙率检测标块是将不同内外径、不同壁厚、不同材料的中空纤维进行两端封端,预埋进复合材料中,保证中空纤维的中空度,以中空纤维的中空作为复合材料的孔隙,模拟复合材料孔隙缺陷,这样就达到已知复合材料孔隙的目的,按照不同的基体,不同的增强材料,选择不同的铺层方式,通过真空辅助成型制备复合材料孔隙率标块,以满足实际检测中多样化的需求;用超声技术对复合材料标块进行扫描,验证试块孔隙率分布的均匀性、孔隙率的相对大小,再与真实孔隙缺陷的超声衰减信号进行对比分析,结合已知复合材料的孔隙,为复合材料孔隙率超声检测提供一种真实有效的比对与评价基准。
-
公开(公告)号:CN107458066A
公开(公告)日:2017-12-12
申请号:CN201710600809.1
申请日:2017-07-21
Applicant: 东华大学
Abstract: 本发明涉及一种增韧碳纤维树脂基复合材料的制备方法,包括:(1)将环氧树脂加入到聚醚砜溶液中,得到混合溶液,最后进行脱泡处理待用;(2)将混合溶液用刮膜棒刮在表面孔隙孔径相同且均匀分布的平板上,在去离子水凝固浴中成膜,得到的初生膜经水洗和干燥后得到复合膜;(3)将复合膜与碳纤维布进行铺层,在真空负压下灌注树脂,经固化得到增韧碳纤维树脂基复合材料。本发明制备工艺简单、可操作行强、适合工业化生产;制备的复合材料力学性能得到小幅度提升,层间断裂韧性提升较为显著,具有良好的应用前景。
-
公开(公告)号:CN104833728A
公开(公告)日:2015-08-12
申请号:CN201510162066.5
申请日:2015-04-08
Applicant: 东华大学
IPC: G01N29/30
Abstract: 本发明涉及一种复合材料孔隙率检测标块及其制备方法,所述的孔隙率检测标块是将不同内外径、不同壁厚、不同材料的中空纤维进行两端封端,预埋进复合材料中,保证中空纤维的中空度,以中空纤维的中空作为复合材料的孔隙,模拟复合材料孔隙缺陷,这样就达到已知复合材料孔隙的目的,按照不同的基体,不同的增强材料,选择不同的铺层方式,通过真空辅助成型制备复合材料孔隙率标块,以满足实际检测中多样化的需求;用超声技术对复合材料标块进行扫描,验证试块孔隙率分布的均匀性、孔隙率的相对大小,再与真实孔隙缺陷的超声衰减信号进行对比分析,结合已知复合材料的孔隙,为复合材料孔隙率超声检测提供一种真实有效的比对与评价基准。
-
公开(公告)号:CN104792679A
公开(公告)日:2015-07-22
申请号:CN201510163050.6
申请日:2015-04-08
Applicant: 东华大学
Abstract: 本发明涉及一种中空微球复合材料孔隙率检测标块的制备方法,属于复合材料无损检测与超声评估技术。所述孔隙率检测标块是将不同内外径、不同壁厚、不同材料的中空微球预埋进复合材料中,以中空微球的中空作为复合材料的孔隙,模拟复合材料孔隙缺陷,这样就达到已知复合材料孔隙的目的,按照不同的基体,不同的增强材料,选择不同的铺层方式,通过树脂传递模塑成型制备复合材料孔隙率标块,以满足实际检测中多样化的需求;用超声技术对复合材料标块进行扫描,验证试块孔隙率分布的均匀性、孔隙率的相对大小,再与真实孔隙缺陷的超声衰减信号进行对比分析,结合已知复合材料的孔隙,为复合材料孔隙率超声检测提供一种真实有效的比对与评价基准。
-
公开(公告)号:CN110343363B
公开(公告)日:2021-11-09
申请号:CN201910573983.0
申请日:2019-06-28
Applicant: 东华大学
Abstract: 本发明涉及一种导电碳纤维复合材料及其制备方法,复合材料组分包括:基体材料、增韧材料、增塑剂和功能纳米填料。本发明利用热塑性树脂聚醚酰亚胺增强增韧环氧树脂的同时,利用功能纳米填料有效增强复合材料导电导热功能性性能。
-
公开(公告)号:CN111393689B
公开(公告)日:2020-12-22
申请号:CN202010420328.4
申请日:2020-05-18
Applicant: 东华大学
Abstract: 本发明涉及一种具有高抗冲击韧性的CF/PPS复合材料及其制备方法,制备方法包括以下步骤:(1)将CF表面原有的上浆剂高温分解;(2)在饱和水蒸气环境中,对CF同时进行微波辐射和紫外光辐照,产物记为ACF;(3)将ACF浸入聚醚砜/二甲基甲酰胺后干燥,得到上浆碳纤维MCF;(4)将MCF与PPS材料叠层热压;(5)热压结束后50‑70℃/min的速率降温至一定温度后,施加一定压力并保载一段时间后卸压;即得具有高抗冲击韧性的CF/PPS复合材料;复合材料的拉伸强度为650‑820MPa,拉伸模量为50‑63GPa,层间剪切强度为60‑80MPa,冲击后的剩余压缩强度为260‑300MPa。本发明的方法特点为高效、环保、可实现规模化生产,制得的复合材料可替代金属用于航空航天、机械、汽车和轨道交通、石油运输等领域。
-
公开(公告)号:CN111393689A
公开(公告)日:2020-07-10
申请号:CN202010420328.4
申请日:2020-05-18
Applicant: 东华大学
Abstract: 本发明涉及一种具有高抗冲击韧性的CF/PPS复合材料及其制备方法,制备方法包括以下步骤:(1)将CF表面原有的上浆剂高温分解;(2)在饱和水蒸气环境中,对CF同时进行微波辐射和紫外光辐照,产物记为ACF;(3)将ACF浸入聚醚砜/二甲基甲酰胺后干燥,得到上浆碳纤维MCF;(4)将MCF与PPS材料叠层热压;(5)热压结束后50-70℃/min的速率降温至一定温度后,施加一定压力并保载一段时间后卸压;即得具有高抗冲击韧性的CF/PPS复合材料;复合材料的拉伸强度为650-820MPa,拉伸模量为50-63GPa,层间剪切强度为60-80MPa,冲击后的剩余压缩强度为260-300MPa。本发明的方法特点为高效、环保、可实现规模化生产,制得的复合材料可替代金属用于航空航天、机械、汽车和轨道交通、石油运输等领域。
-
-
-
-
-
-
-
-
-